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Abstract Pavlov was proposed as a leading strategy for
realizing cooperation because it dominates over a long
period in evolutionary computer simulations of the Iterated
Prisoners’ Dilemma. However, our numerical calculations
reveal that Pavlov and also any other cooperative strategy
are not evolutionarily stable among all stochastic strategies
with memory of only one previous move. We propose
simple learning based on reinforcement. The learner
changes its internal state, depending on an evaluation of
whether the score in the previous round is larger than a
critical value (aspiration level), which is genetically fixed.
The current internal state decides the learner’s move, but
we found that the aspiration level determines its final be-
havior. The cooperative variant, having an intermediate
aspiration level, is not an evolutionarily stable strategy
(ESS) when evaluation is binary (good or bad). However,
when the evaluation is quantified some cooperative variants
can invade not only All-C, Tit-For-Tat (TFT), and Pavlov
but also noncooperative variants with different aspiration
levels. Moreover, they establish robust cooperation, which
is evolutionarily stable against invasion by All-C, All-D,
TFT, Pavlov, and noncooperative variants, and they receive
a high score even when the error rate is high. Our results
suggest that mutual cooperation can be maintained when
players have a primitive learning ability.

Key words Prisoners’ dilemma · Evolution of cooperation ·
Learning · Pavlov · Mathematical model · Computer
simulation

Introduction

The Iterated Prisoner’s Dilemma has played an important
role in the study of evolution of cooperative behavior in
populations of selfish agents (Axelrod and Hamilton 1981).
Two players engaged in the Prisoner’s Dilemma must
choose between cooperation (C) and defection (D). In any
round, the two players receive R points (the reward for
cooperation) if both cooperate and only P points (the pun-
ishment for mutual defection) if both defect. A defector
exploiting a cooperator gets T points (the temptation to
defect) while the cooperator receives S points (the sucker’s
payoff). When T . R . P . S and 2R . T 1 S, it is always
best to defect in a single round, and hence mutual defection
is a logical result although both players receive more points
in mutual cooperation. The best-studied set of score values
are T 5 5, R 5 3, P 5 1, S 5 0 (e.g., Axelrod 1984;
Sandholm and Crites 1995; Brauchli et al. 1999; Posch
1999), which is adopted also in this study.

When the Prisoner’s Dilemma game is repeated
(Iterated Prisoner’s Dilemma, IPD), the most adaptive
strategy is not clear. In a series of computer tournaments
(Axelrod 1984), a simple strategy Tit-For-Tat (TFT) did
outstandingly well. TFT plays C in the first round and then
plays its opponent’s previous move. Nowak and Sigmund
(1993a) ran an integrated evolutionary simulation including
error (which was not considered in Axelrod’s tournaments)
among stochastic strategies whose moves were dependent
only on the moves of the previous round. Such strategies
can be written as (p1,p2,p3,p4), each component of which
corresponds to the probability of playing C when the previ-
ous round is CC, CD, DC, or DD, respectively (the former
letter represents its own move while the latter is the
opponent’s move). The winning strategy was Pavlov, which
plays C only after mutual cooperation or mutual defection.
Significantly, Pavlov realizes mutual cooperation when
matched against another Pavlov. However, Pavlov is in-
vaded by All-D and hence is not an evolutionarily stable
strategy (ESS) (Nowak and Sigmund 1993a; Stephens et al.
1995). We study here whether an evolutionarily stable
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cooperative strategy exists among (p1,p2,p3,p4) type strate-
gies. We also examine the behavior of Pavlov under high
error rates because Nowak and Sigmund (1993a) conducted
simulation only under 1% error rate.

Pavlov is referred to as “win–stay lose–shift” strategy;
this is because Pavlov (1,0,0,1) can be interpreted as “keep
the same play when rewarded (T, R) but change play when
punished (P, S).” This response is an intuitively understand-
able standard of action. Generally, the learning rule of
“positive learning: repeat when the result in the previous
round is good, and negative learning: change when the
result in the previous round is bad” is called reinforcement
learning, which is widely observed in many kinds of crea-
tures including apes, mice, rats, pigeons (Papini 1997), toads
(Brattstrom 1990), and spiders (Whitehouse 1997).

Recently, there have been some studies in which the
reinforcement learning rule is adopted in IPD. Stephens
and Clements (1998) surveyed the condition under which
cooperation is achieved as a result of learning. Posch (1999)
performed evolutionary simulation among reinforcement
learning strategies and found that cooperation is estab-
lished. Sandholm and Crites (1995) introduced Q-learning
as a player’s learning method. However, these studies lack
evolutionary stability analysis. Especially, it is interesting
to analyze evolutionary stability against invasion of the
well-known simple classic strategy, TFT, which cannot be
represented in the form of a reinforcement learning rule.
Evolationary stability analysis may also reveal to what
extent learning strategy is stable against invasion of uncon-
ditional strategies (All-C and All-D). If unconditional strat-
egy scores almost the same as learning strategy, a learning
strategy cannot evolve when cost of learning is introduced.
In this article, we propose simple reinforcement learning
strategies and show that some of them are a cooperative
learning strategy that establishes more robust reciprocal
cooperation than Pavlov does. We perform evolutionarily
stability analysis to study whether such cooperative learning
strategy is stable against invasion of non-cooperative learn-
ing strategies, classic strategies (TFT and Pavlov) and un-
conditional strategies (All-C and All-D).

Model and results

Definition of evolutionarily stable strategy (ESS)

To perform evolutionarily stability analysis, we must define
ESS. In this article, we use Maynard-Smith and Price’s
(1973) definition. There is no ESS in Iterated Prisoners’
Dilemma when all possible strategies are considered (Boyd
and Lorberbaum 1987; Lorberbaum 1994). However, when
the strategy set is restricted, ESS may exist. If a strategy is
stable against invasion of any other strategy, it is called as
an ESS. Thus, strategy x* e X is an ESS, if and only if

        E x x E x x, * *, *( ) ( ) # (1)

        E x x E x x if E x x E x x*, , , * *, *( ) ( ) ( ) ( ) .  5 (2)

for any strategy x belonging to the strategy set X. E(x,y) is
the payoff of strategy x when matched against strategy y.
When we refer to ESS, it is very important to show the
strategy set. We use term “ESS within set X” in this article.

Performance of classic strategies

The average points of a (p1,p2,p3,p4) type strategy against
the same strategy in an infinitely repeated game can be
analytically calculated (Nowak and Sigmund 1993b). Using
the same method with changing error rates, we calculated
the average scores of populations in which individuals
take the same strategy, All-C, Pavlov, TFT, All-D, or GTFT
(see Table 1 for their definition and scores).

When the game is repeated long enough, the existence
of errors makes the average score of a TFT population
much smaller than R, the point for mutual cooperation. This
change occurs because just one error pushes them out from
the initial CC state and they play CD and DC repeatedly
until they return to the CC state again with another error.
On the other hand, Pavlov can soon come back to CC
through DD when CD or DC is played due to an error. In
this sense, the CC state is stable in Pavlov population, and
this is the reason why reciprocal cooperation is finally
achieved by Pavlov in the evolutionary simulation (Nowak
and Sigmund 1993a).

The average score of a Pavlov population is, however,
lower than that of an All-C population and the difference
increases as the error rate increases. To enjoy the maximum
benefit of cooperation when the error rate is high, the
player must play C after CD, which is caused by the
opponent’s error. Generous Tit-For-Tat (GTFT) plays C
after CD at a certain probability and hence receives a higher
score than Pavlov. However, a strategy that plays C after
CD is completely exploited by All-D and is not evolution-
arily stable.

Let us consider a set of deterministic strategies that have
the memory of only one previous move (24 possibilities, C or
D, after CC, CD, DC, and DD). There are only two ESSs
within this set, All-D and GRIM 5 (1,0,0,0) (Nowak and
Sigmund 1993b). GRIM is a grim strategy in the sense that
it never forgives the opponent’s defection. Under the pres-
ence of the error, the stable state of the GRIM population
as well as the All-D population is mutual defection. We
have derived ESSs within (p1,p2,p3,p4) type stochastic
strategies by the following method. We considered 414

Table 1. Average scores of populations for infinitely iterated
Prisoners’ Dilemma

Error All-C Pavlov TFT All-D GTFT
rate (%) (1,1,1,1) (1,0,0,1) (1,0,1,0) (0,0,0,0) (1,1/3,1,1/3)

0 3.000 3.000 3.000 1.000 3.000
1 2.990 2.951 2.010 1.030 2.958
5 2.948 2.777 2.048 1.148 2.820

10 2.890 2.602 2.090 1.290 2.692
20 2.760 2.376 2.160 1.560 2.520

All-C, always cooperate; TFT, Tit-For-Tat; All-D, always defect;
GTFT, generous TFT
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strategies, pis of each strategy taking 41 discrete values
spaced evenly between 0 and 1. First, results of all possible
matches are numerically calculated, that is, E(s1,s2) for
all combinations of s1 and s2 is calculated and stored in
memory. Second, for each strategy s*, we investigated
whether E(s,s*), E(s*,s*), and (if necessary) E(s*,s) meet
the ESS definition or not. Results of our numerical calcula-
tion suggested that only All-D and GRIM are ESSs. GTFT
and Pavlov, which are known to realize cooperation, were
not ESSs within this set. Nowak and Sigmund claimed that
a Pavlov-like strategy (0.999, 0.001, 0.001, 0.995) could not
be invaded by All-D (Nowak and Sigmund 1993a), but
we confirmed that the Pavlov-like strategy is invaded by
Pavlov, which is invaded by All-D. In conclusion, within the
most frequently studied strategy set (deterministic and sto-
chastic strategies with one-move memory), no strategy that
realizes cooperation is an ESS.

Introducing learning players

Pavlov does not explain actual cooperative behaviors for
two reasons: it is not an ESS and it does not behave very
cooperatively under high error rates (see Table 1). There-
fore, we propose a simple learning player that may explain
cooperative behaviors better than Pavlov. We suppose that
learning players make a decision based on their internal
states. The internal state continues to change gradually ac-
cording to past experience (results of games), and the accu-
mulation of small changes leads to a switch of action when
the internal state crosses the threshold level (50 in our
computer simulation). So, the internal state continues to
change even when the same result of the game is repeated.
We denote the internal state by h. The learning player plays
C (cooperation) when h $ 0, otherwise D (defection). We
do not assume an upper or lower limit in internal state h in
the computer simulation; the large absolute values repre-
sent deep faith in cooperation or defection.

When we model the rule of reinforcement learning, it
is important how many points are necessary for a player
to judge whether the result is good. We assume that the
threshold score is genetically fixed as aspiration level s. As
the dynamics of s proceed on the evolutionary time scale, s
is set to a constant value when the dynamics of h (learning
process) are investigated. The dynamics of h are based on
the rule of reinforcement learning and defined as follows. If
C is played and the resulting score f is larger than s, coop-
eration is affirmatively learned. That is, the player increases
h to become more cooperative. If C is played and the re-
sulting score f is smaller than s, cooperation is negatively
learned. That is, the player decreases h to become less
cooperative. If D is played and the resulting score f is larger
than s, defection is affirmatively learned, leading to de-
crease in h, and vice versa.

Digital learner

First, we suppose the most simple case in which the change
in h per round is a constant value a. We name this digital

learner, or DL. The formulation of its learning method is as
follows:
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As a gives only the scale of the player’s internal variable h,
the behavior of the player is independent of a. Aspiration
level s does not influence the learning process as long as the
sign of f 2 s is the same. The only thing that matters is
whether s is larger than each of T, R, P, and S. Thus, there
are only five independent learners (s # 0, 0 , s # 1, 1 , s #
3, 3 , s # 5, s . 5). They are abbreviated as DL(s # 0),
DL(0 , s # 1), and so on. When 1 , s # 3, the behavior is
similar to Pavlov as the player is satisfied with T and R while
not satisfied with P and S. However, DL(1 , s # 3) is still
different from Pavlov because it plays based on its internal
state h.

An error occurs with probability e when the player takes
the opposite action from that which is expected from the h
value. Learning is done according to the foregoing expres-
sion even when an error occurs, thus assuming the player
does not notice their error.

The sign of the initial h value determines the initial ac-
tion. A major reason why many strategies that realize recip-
rocal cooperation are not evolutionarily stable is that they
cannot prevent invasion of All-C by genetic drift. If the
initial action is D, then the player may be able to learn
to exploit All-C. We assume that the initial h value is 2a/2
and h is reset to the initial value every time the opponent
changes. With this initial state (a naive defective state), the
player may change the next action to C, reacting to the
initial move of the opponent. The initial action of Pavlov is
also assumed to be D.

When the number of repetitions is small, the result is
nearly random because the match ends before sufficient
learning is done. We repeat games 10000 times because
preliminary tests showed that such a number of times is
necessary to clarify the effects of learning. For example, the
action of DL(1 , s # 3) is shown in Table 2. This player acts
like Pavlov but the cooperation realized among DLs(1 , s
# 3) is more stable. It is so because the h values of both
players become very large when cooperation continues for a
long time and hence they cooperate, even though a player’s
h value decreases a little, after its opponent makes an occa-
sional error to play D (Pavlov comes back to CC through
DD as CC, DC, DD, CC, . . .). As shown in Table 1, the
average score for populations of Pavlov or GTFT decreases
as the error rate increases: 2.951 (1% error) to 2.602 (10%
error) for Pavlov and 2.958 (1% error) to 2.692 (10% error)
for GTFT. On the other hand, the average score in popu-
lation of DL(1 , s # 3) decreases little as the error
rate increases: 2.985 (1% error) to 2.865 (10% error) (see
Table 3).

Which strategy is an ESS within the set of five indepen-
dent digital learners? This can be determined by examining
scores of each player when it plays IPD against different
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and the same strategies (note that the initial value of h is
reset when the opponent changes). Matches among five
different DLs were conducted by computer simulation and
the results are shown in Table 3. When the same strategies
are matched, mutual cooperation is realized only among
DL(1 , s # 3) because the score is near to 3 points. How-
ever, when the wild type in a population is DL(1 , s # 3),
the mutant DL(s . 5) receives more points than the wild
type for both high and low error rate cases. Therefore,
DL(1 , s # 3) is not an ESS. On the other hand, when DL(s
# 0) is the wild type, the score of DL(s # 0) is always higher
than the score of any mutant. Table 3 shows that DL(s # 0)
is the only ESS for both high and low error rates. DL(s # 0)
is the strategy that plays D in every round because it judges
any result as “good” and the initial h value is negative. We
do not present here the results of IPD between DL and the
classic strategies because the evolutionarily stable DL does
not show cooperative behavior.

Analog learner

The way of learning for the digital learner is binary, good or
bad. So, the impact on learning process is the same whether
DL(1 , s # 3) gets 5 points or 3 points. However, the
magnitude of satisfaction would normally be different for
different payoffs. Hence, let us consider another model in
which the impact is proportional to the difference between
resulting score f and aspiration level s:

        Dh a f s h 5  2 ( )◊ ( )sgn

We refer to this learning process as the analog learner (AL)
model. In this model, a small difference in the genetic pa-
rameter s produces different learning processes. In the com-
puter simulation, we used 56 s values from 20.1 to 5.4 at 0.1
intervals. Assumptions for the initial h value, the error rate
e, the learning method in the case of error, and the number
of games are the same as for the DL model. Obviously, the
behavior of AL is also independent of the a value.

First, we survey whether AL can invade classic strate-
gies. It is clear that AL cannot invade All-D because no
strategy can receive more points than All-D when matched
against All-D. ALs for s , 5 invade All-C and are stable
against All-C. The reason is as follows. When ALs for s , 5
are matched against All-C, they play D in the first round,
and the result of the first round is DC. As ALs for s , 5
judge DC as good, they continue to learn to play D with
decreasing h and hence the exploitation never ceases. We
calculated the average scores of ALs with different s values
when they are matched against TFT or Pavlov. The average
scores for different s values are shown with the average
score that TFT or Pavlov gets against itself (Fig. 1). When
an error rate is 1% (Fig. 1a), ALs for s # 3.0 make a slightly
better score against Pavlov than the average score of a
Pavlov population and hence ALs for s # 3.0 can invade a
Pavlov population. ALs for 1.6 # s # 3.0 make a better
score against TFT than the average score of a TFT popula-
tion and hence ALs for 1.6 # s # 3.0 can invade a TFT

Table 2. Comparison of digital learner (1 , s # 3, a 5 2) and Pavlov

Strategy Opponent Actual realization of game (h) Average
payoff

DL(1 , s # 3) All-D DD(21), CD(1), DD(21), CD(1), DD(21), . . . 0.5
All-C DC(21), DC(23), DC(25), DC(27), DC(29), . . . 5
Pavlov DD(21), CC(1), CC(3), CC(5), CC(7), . . . 3
TFT DC(21), DD(23), DD(21), CD(1), DC(21), . . . 1.75
DL(1 , s # 3) DD(21), CC(1), CC(3), CC(5), CC(7), . . . 3

Pavlov All-D DD, CD, DD, CD, DD, . . . 0.5
All-C DC, DC, DC, DC, DC, . . . 5
Pavlov DD, CC, CC, CC, CC, . . . 3
TFT DC, DD, CD, DC, DD, . . . 2
DL(1 , s # 3) DD, CC, CC, CC, CC, . . . 3

DL, digital learner

Table 3. Results of matches among digital learners

Player Opponent (Wild type)
(mutant) s # 0 0 , s # 1 1 , s # 3 3 , s # 5 s . 5

(a) 1% error s # 0 1.030049 1.030053 2.965461 2.965461 2.985005
0 , s # 1 1.030048 1.030052 2.985288 2.965454 2.974166
1 , s # 3 0.535146 0.535152 2.984959 0.584596 1.519351
3 , s # 5 0.539876 0.53988 2.943325 1.738342 2.502725
s . 5 0.535053 0.545318 3.954128 1.258617 2.010029

(b) 10% error s # 0 1.290936 1.290994 2.851567 2.709865 2.849876
0 , s # 1 1.290922 1.290977 2.851499 2.709804 2.788106
1 , s # 3 0.848479 0.848549 2.865511 1.243602 1.848385
3 , s # 5 0.888843 0.88891 2.482726 1.910963 2.405803
s . 5 0.850024 0.98887 3.526731 1.601163 2.090827
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population. When an error rate is 10% (Fig. 1b), ALs for s
# 3.1 can invade a Pavlov population and ALs for 1.6 # s #
3.0 can invade a TFT population. In conclusion, analog
learners for 1.6 # s # 3.0 can invade All-C, TFT, and Pavlov
in both high and low error rate situations.

Second, to study the stability of a AL population, we
calculated the average score which All-D, TFT, or Pavlov
gets against ALs with different s values and the average
scores of the AL populations (Fig. 2). For 1.6 # s # 3 where
AL can invade All-C, TFT, and Pavlov, AL populations are
stable against invasion of All-D and Pavlov for both high
and low error rate situations. AL populations are stable
against invasion of TFT for s 5 2.6 2 3.0 for a 1% error rate
and for s 5 2.7 2 2.8 for a 10% error rate. In conclusion,
ALs with s 5 2.7 2 2.8 are stable against all of All-D,
Pavlov, and TFT in either case of 1% or 10% error.

The average scores of AL populations for 1 , s , 3 are
generally high. Because the score of a player experiencing
the repetition of DC and CD is 2.5, the average score

exceeding 2.5 implies that CC is played frequently in the
population. We regard such populations as cooperative. AL
plays cooperatively for 1.1 # s # 3.1 when the error rate is
1% and for 2.4 # s # 2.9 when the error rate is 10%. Over
most of these cooperative regions, the average score of the
AL population is larger than that of the Pavlov population
(Figs. 1, 2). The reason why cooperative action is observed
for 1 , s , 3 is as follows. Playing C after CC is affirmatively
learned only when s , 3. The initial outcome is always DD,
and ALs for s , 1 continue to play D. So, only ALs for 1 ,
s , 3 can depart from the initial DD state and establish
stable cooperation maintained by an increasing belief in C.

To study evolutionary dynamics of the aspiration level s,
the results of games among ALs with different s values
were calculated and are summarized in Fig. 3. When the
error rate is 1%, ALs with s values around s 5 1.2 (s 5
1.1,1.2,1.4,1.7) and around s 5 2.8 (s 5 2.5,2.6,2.7,2.8,3.0)
are global ESSs (stable against any invader). The AL(s 5
2.8) that makes the best average score of population is an

Fig. 1a,b. Invasion of analog learner (AL). The average scores of ALs
with different s values against Pavlov and Tit-For-Tat (TFT) are shown
with the average score of a Pavlov and a TFT population. AL can
invade Pavlov or TFT when AL receives more points than the average
score of a Pavlov or a TFT population when matched against Pavlov or
TFT. The average value of 10 000 runs with different random number
seeds is shown. Error rate: (a) 1%; (b) 10%

a

b

a

b

Fig. 2a,b. Stability of analog learner (AL). The average scores of All-
D, Pavlov, and TFT against ALs with different s values are shown with
the average score of the AL population. All-D, Pavlov, or TFT can
invade AL when it receives more points than the average score of the
AL population. The average value of 10000 runs with different random
number seeds is shown. Error rate: (a) 1%; (b) 10%
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ESS. ALs for s $ 3.1 except for s 5 3.6,3.9 are local ESSs
(stable against neighboring invaders) but they are invaded
by ALs with smaller s values. When an error rate is 10%,
AL(s 5 1.1,1.2,1.3) and AL(s 5 2.5,2.6) are global ESSs.
The AL(s 5 2.6) that makes the best average score of a
population is an ESS. ALs(s 5 4.5,5) are local ESSs, but

they are invaded by ALs(s , 3.8). For both 1% and 10%
error rates, global ESSs are always high-average scoring
variants (1 , s , 3).

ALs(1 # s # 3) can easily invade a TFT population (Fig.
1), but they are invaded by TFT except for a narrow region
around s 5 2.7 (Fig. 2). The match between ALs(1 # s # 3)
and TFT become basically mutual cooperation because
only CC is a stable equilibrium. When cooperation is re-
peated for a long time, the h value of AL becomes very
large and does not respond to D, which is played by TFT by
error so it continues to play C. On the other hand, when AL
plays D by error, TFT revenges by playing D once and then
they come back to reciprocal cooperation. This may be the
reason that TFT has a slight advantage when matched
against most ALs.

When the error rate is 1%, an AL population is stable
against invasion of TFT at s 5 2.6,2.7,2.8,2.9 (Fig. 2a) and
among these, ALs(s 5 2.6,2.7,2.8) are the ESS in the evolu-
tionary dynamics of s (Fig. 3a). At these s values, neither
classical strategies (All-C, All-D, or Pavlov) can invade AL.
This result suggests that ALs(s 5 2.6,2.7,2.8) would finally
become a majority in a population.

When the error rate is 10%, an AL population is stable
against invasion of TFT at s 5 2.7,2.8 (Fig. 2b). On the other
hand, evolutionarily stable s values are s 5 2.5,2.6 (Fig. 1b).
Hence, larger s values (2.7 or 2.8) are preferred when
matched against TFT while smaller s values (2.5 or 2.6) are
preferred when matched against another AL. TFT cannot
become a majority in a population because TFT scores very
low against itself and is easily invaded by AL(1 # s # 3). As
a result of these evolutionary dynamics in case of a 10%
error rate, AL(s 5 2.6,2.7) may become a majority in a
population with TFT at a very low frequency.

Discussion

Character of digital learner

The DL model is very similar to the model of Stephens and
Clements (1998). In their model, the probability of playing
C is directly changed by learning while here the internal
state h is changed. They obtained the same result as for our
model that there are five possible aspiration levels and co-
operation is learned when only P and S are interpreted as
punishment (1 , s # 3) (see Table 3). However, they did
not refer to evolution of aspiration levels at all whereas we
studied evolutionary dynamics among the five variants of
DL. We found that the cooperative variant (1 , s # 3) is not
an ESS and that there is only one ESS which is, DL(s , 0).
DL(s , 0) acts completely like All-D. Considering that the
All-D strategy is much more simple and may cost less, digi-
tal learners would be replaced by All-D and disappear soon
even if it appeared by mutation.

In both DL and AL models, we assumed that there is no
upper or lower limit in internal state h. If a range of h is
limited, different results may occur. For example, if the h
value can take only 2a/2 or a/2, DL(1 , s # 3) is equivalent

Fig. 3a,b. Results of games among ALs with different s values were
calculated and summarized in a pairwise invasibility plot. Mutant AL(s
5 s) can invade wild type AL(s 5 s*) in the gray regions while it cannot
in white regions. When the average score of a mutant is larger than or
equal to the average score of a wild type, the invasion is assumed to be
successful and so the diagonal line is always gray. The scores were
calculated as the average of 1000 runs with different random number
seeds. Error rate: (a) 1%; (b) 10%
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to Pavlov. If the range of h is small, learners cannot estab-
lish robust cooperation based on strong belief and so they
cannot behave very cooperatively under high error rates.
The large range of h is a key to robust cooperation.

Character of analog learner

Nowak and Sigmund showed that Pavlov continues to main-
tain a majority in a population for a very long period with an
integrated evolutionary simulation (Nowak and Sigmund
1993a). One purpose of our study was to survey the possibil-
ity of a learning system that would replace the unstable
cooperative state realized by Pavlov, which is not an ESS
within the set, and attain a more solid state of mutual co-
operation. Another purpose was to survey for a learning
system that ameliorates the inevitable decrease in average
score brought by increasing error rates. Such a learning
system must be stable against invasion of more simple strat-
egies without a long-term memory. We found that AL(s <
2.7) is the one that most nearly satisfies these conditions. It
is an ESS within the set of analog learners, establishes stable
cooperation even when an error rate is high, and is stable
against invasion of well-studied classic strategies (All-C,
All-D, TFT, and Pavlov).

A major reason why many strategies that realize recipro-
cal cooperation are not evolutionarily stable is that they
cannot prevent invasion of All-C by genetic drift. We de-
fined the analog learner’s initial move as D, so it learned to
exploit All-C. Even under this restriction of initial move, we
observed that learners can establish mutual cooperation.
Such cooperative learners also learned to avoid being ex-
ploited by All-D. When All-D invades AL’s population
(s < 2.7), it scores about 2.5 points on average, which is
smaller than population average score by about 0.4 points
(for the reason, see next section). Thus, this cooperative
population is evolutionarily stable against invasion of un-
conditional strategies even if the learning brings some cost
so long as the cost is smaller than 0.4 points. Pavlov is
cooperative and is not invaded by All-C and thus it is re-
garded as the leading strategy for realizing cooperation.

When cost of learning is introduced, however, Pavlov is
invaded by All-D. We have shown no cooperative strategy
is an ESS within stochastic strategies with one-move
memory. On the other hand, we found a cooperative analog
learner that is not invaded by All-C and All-D as well as
TFT and Pavlov. This property is unique in AL of our
model, and has never been found in other models of learn-
ing strategies (Stephens and Clements 1998; Posch 1999;
Sandholm and Crites 1995).

AL comes to play only C (or D) when it has strong belief
(|h| >> 0); this is why it can obtain high average scores by
mutual cooperation under the existence of errors. The sta-
bility of cooperative variants (1 , s , 3) against noncoop-
erative ALs is because they are not satisfied with CD and
immediately learn to escape from the opponent’s exploita-
tion. However, there exists a strategy that presumes on
these properties of AL. The anti-AL strategy continues to
play C until AL has strong belief in C and plays D to exploit

AL until the belief almost disappears and then plays C
again so that AL’s belief in C recovers. The strategy given
here is more complex than AL because it estimates not only
the opponent’s play but also the opponent’s internal state.
Whether or not such a strategy could evolve depends on
costs of the estimation.

Difference between digital learner and analog learner

The cooperative variant (1 , s # 3) is not an ESS within the
set of digital learners while some of cooperative variants of
AL are ESSs within the set of analog learners. What makes
this difference? The amount of change in h value of DL per
one learning process is constant, and the player’s h value
takes the one of one-dimensional lattice points with coordi-
nate (n 1 1/2) ·a (n 5 0, 61, 62, 63, . . .). For example,
when DL(s # 0) and DL(1 , s # 3) are matched, the h
value of the former monotonously decreases because it
judges any result as good and repeats the initial move D.
Thus, the latter cannot get R(5 3) points or T(5 5) points
and its judgment is always bad. As a result, the h value of
the latter takes 2a/2 and a/2 by turns and the result of the
game takes DD and DC by turns. DL(s # 0) takes 3 points
on average and can invade by genetic drift the population of
DL(1 , s # 3) in which the average score is 3. This is the
same mechanism by which Pavlov is invaded by All-D. The
existence of an error slightly changes the actual values, but
the essential mechanism remains the same.

On the other hand, the amount of change in h value of
AL is dependent on the result of the previous game. For
example, when AL(s 5 20.1) and AL(s 5 2) are matched,
the h value of the former also monotonously decreases but
the h value of the latter takes 20.5a, 0.5a, 21.5a, 20.5a,
0.5a, 21.5a, and so on. The result of the game is that DD
repeats two times after each single DC. As a result, AL(s 5
20.1) takes 2.3 points on average and cannot invade the
population of AL(s 5 2) where players behave coopera-
tively and get 3 points on average. This result holds so long
as 1 # s # 3. This essential difference in the learning process
caused different results between DL and AL. Quantified
evaluation brings learners an efficient ability to avoid being
exploited by always defecting strategies.

Characteristics of our study

There are many theoretical studies about how cooperation
evolves in species under situations like the Iterated
Prisoner’s Dilemma. Many factors have recently been intro-
duced to this problem, such as spatial structure (Lindgren
and Nordahl 1994; Ferriere and Michod 1996; Brauchli et al.
1999), rumor (Nowak and Sigmund 1998), ability to choose
the opponent (Ashlock et al. 1996; Cooper and Wallace
1998), variable investment (Roberts and Sherratt 1998), ne-
gotiation (McNamara et al. 1999), and so on (for review, see
Brembs 1996). Most of those factors assume additional en-
vironmental conditions to the pure Prisoners’ Dilemma
game. When players must play a pure Prisoners’ Dilemma
game, the only available information is history of games.
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We showed that robust cooperation can be maintained
without additional assumption on environment if players
have a very primitive ability to learn from history of
games.

There are some studies in which players in Prisoner’s
Dilemma are modeled as learning automata (Rubinstein
1986; Billard 1995, 1996; Harrald and Fogel 1995). These
models can be viewed as complicated variants of reinforce-
ment learners. Automata or a neural network is a model of
brain, and the study of behavior of players with such com-
plicated learning may be important for analysis of higher
animals. However, we go to the opposite. We are interested
in the behavior of the most simple form of reinforcement
learner, which seems to be provided with many animals.
Our result shows that players with such a simple and intu-
itively familiar learning rule establish very efficient and ro-
bust cooperation.
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