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Abstract

Cannibalistic polyphenism is observed in many fishes and amphibians. In the case of amphibian larvae, cannibal morph and

typical morph coexist. Benefits and costs of the cannibal morph have been studied empirically but the mechanism of the

maintenance of polymorphism is not well known. Here, we construct a game model of typical and cannibal morph strategies to

obtain the condition of stable coexistence. Generally, once an individual succeeds in cannibalism, it grows very quickly, which

facilitates the next cannibalism. In a model without this ‘drastic growth effect’, stable coexistence cannot occur. To represent drastic

growth effect, it is assumed that cannibal/typical morph stage is followed by giant/normal stage. A cannibal morph that performs

cannibalism in the first stage can become a ‘giant’ in the next stage. This model allows stable coexistence of cannibal and typical

morphs. The condition for coexistence is that payoff of a giant is two times larger than normal individuals. As long as direct

consumption of victim’s body is considered as reward for successful cannibalism, coexistence cannot be explained. When the reward

is considered as social standing of being outstanding size in a population, sympatric cannibalistic polymorphism is possible, without

regard to the initial size variation or resource shortage.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Intra-specific predation, or cannibalism, is a com-
monly observed ecological interaction in many animal
taxa (for review, Polis, 1981). Cannibalistic polyphenism
is known in many fishes and amphibians (Polis, 1981;
Crump, 1992). Cannibalistic polyphenism consists of
two cases. First, all members of the population are
potentially cannibal, although small differences in
success of cannibalism ultimately result in an explicit
polymorphism, for example, in body size. Second,
cannibalistic and typical individuals coexist as alter-
native strategies or tactics with different morphology.
There are few experimental studies which clearly
distinguish the two cases. If only size variation is
observed, it might be the result of cannibalism, i.e. the
former case. On the other hand, cannibal morph, which
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is characterized by a greater head width (and thus larger
mouth) relative to body length, is known in Ambystoma

salamanders (Rose and Armentrout, 1976), Hynobius

salamanders (Wakahara, 1995) and Scaphiopus toads
(Pfennig, 1990). As cannibalism is gape-limited, canni-
bal morph has an advantage in performing and avoiding
cannibalism. The cannibal morph appears in Hynobius

salamanders in very early developmental stage when
they do not perform cannibalism (Nishihara-Takahashi,
1999). In addition, cannibal morph usually has specia-
lized oral structures (Crump, 1992). These facts suggest
that cannibalistic polymorphism in amphibian is of the
second kind. Such kind of cannibalistic polymorphism
may exist in other species in which individual with the
disproportionately large organ related to cannibalism is
observed.
It is known that cannibal morphology is a plastic

phenotypic response to environmental conditions
(Nishihara, 1996; Hoffman and Pfennig, 1999; Nishi-
hara-Takahashi, 1999; Kohmatsu et al., 2001). These
studies might imply that tactics (cannibal or typical) are
different phenotypes of a single genotype. On the other
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hand, there is a study demonstrating differences in
allozyme frequency between cannibal and non-cannibal
morphs (Pierce et al., 1981). The study implies that each
morph has a corresponding genotype (or genotypes).
These empirical studies suggest two opposite hypotheses
and the reality probably lies in between.
In the present study, we study the case in which each

tactic results from each strategy and the condition for
the stable coexistence of two pure strategies is mathe-
matically analysed. Evolution of cannibalistic poly-
morphism is discussed later. The model might be
applied to the different situation where a single mixed
strategy dominates the population. This point will also
be discussed later.
In this paper, we study the simple case with only two

strategies, typical and cannibal morphs. For example,
Ambystoma salamanders meet the condition (Pfennig,
1989). Generalized ‘‘cannibal morph’’ is defined as a
strategy which specializes in cannibalism and enjoys
larger probability of cannibalism and smaller probabil-
ity of being cannibalized but suffers larger natural
mortality.
Even when population density is very high, many

individuals retain the typical morph features, resulting
in a polymorphic population (Pfennig and Collins, 1993;
Wakahara, 1995). To understand the phenomenon, the
previous studies focused on the cost of cannibalism
(Pfennig et al., 1998; Pfennig, 2000; Kohmatsu et al.,
2001). Eating relatives (Pfennig and Collins, 1993;
Wakahara, 1995) and pathogen infection (Pfennig
et al., 1991, 1998) are considered as such cost. These
studies have answered the question why all individuals
do not always develop cannibal morph. As cost and
benefit of cannibal morph depend on the environment,
cannibal morph is not always adaptive. The next
question is how two morphs can coexist under the same
environmental conditions. In order to establish stable
coexistence, frequency dependence of the payoff must
satisfy certain criteria such as in a Hawk–Dove game
(Maynard-Smith, 1982). Some studies (Pfennig, 1992;
Maret and Collins, 1997) explained cannibalistic poly-
morphism based on the experiments, suggesting that the
resources for each morph are limited and independent,
i.e. cannibal morphs are escapee from intense competi-
tion among typical morphs. However, cannibalism has
very strong and complex impact on population and thus
cannibalistic polymorphism might be explained without
regard to resource shortage. The present study explores
such possibility.
Most previous theoretical studies on cannibalism have

focused upon sized-population dynamics (Van den
Bosch et al., 1988; Henson, 1997; Cushing, 1992; Fagan
and Odell, 1996; Claessen et al., 2000; Wakano et al.,
2002). In these studies, the occurrence of cannibalism is
not caused by the difference of strategies but size
dependent. There are few theoretical studies where
alternative strategies regarding cannibalism are defined
and the condition for the polymorphism is obtained (but
see, Dercole and Rinaldi, 2002).
Here, we propose a simple game model to explain the

mechanism of the maintenance of sympatric cannibalis-
tic polymorphism. First, the simplest game model of
typical and cannibal morph strategies is analysed. The
model appears unable to account for coexistence. The
reason why coexistence is not reproduced can be
explained in a general way (independent of the function
form). ‘‘Drastic growth effect of cannibalism’’ is
introduced as a possible mechanism of coexistence.
The extended model is proposed and the mathematical
analysis shows that it can reproduce stable coexistence.
Further analysis and numerical calculation confirms
that the result remains qualitatively the same when
assumptions of analysis are relaxed.
2. Models and results

2.1. The simplest model

The strategies in the game are cannibal morph and
typical morph, which are fixed from birth. For
simplicity, all individuals start growing at the same time
with the same size. The initial population is defined as
one without loss of generality. Let p and 1� p be the
initial frequency of cannibal morph and typical morph,
respectively. For simplicity, we assume that there is only
one opportunity for cannibalism, which occurs at the
end of the growth period and that at every encounter
cannibal morph preys on typical morph. The frequency
of encounters between cannibal and typical morphs is

G ¼min ½gpð1� pÞ; 1� p�

¼
gpð1� pÞ ðgpo1Þ;

1� p ðgpX1Þ;

(
ð1Þ

where g represents population density. Minimum func-
tion is required to represent the situation in which all
typical morphs are cannibalized. G typical morphs out
of 1� p become victims of cannibalism. Energy gain of
typical morph consists of only regular food consump-
tion, denoted by A: As described above, in order to
exclude the effect of resource shortage, regular food
consumption is assumed to be constant. Energy gain of
cannibal morph is

kA
G
p
þ B: ð2Þ

The first term is energy gain from cannibalism. kA

corresponds to energy transfer per victim, which is
proportional to the energy gain of typical morph.
0oko1 is a conversion factor. G

p
represents the average

frequency of victims per cannibal morph. The second
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Fig. 1. Payoff of cannibal morph (solid line) and typical morph

(dashed line) drawn against cannibal morph frequency. A bistable case

is shown. The position or existence of the intersection may vary, but

the latter is always steeper.
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term B comes from regular food consumption. Payoff of
each strategy is defined as the product of the energy gain
during growth and the survival rate:

FT ¼A
1� p � G
1� p

¼
A � Agp ðgpo1Þ;

0 ðgpX1Þ;

(
ð3aÞ

FC ¼ kA
G
p
þ B

� �
m

¼
mkAgþ mB � mkAgp ðgpo1Þ;

mB þ mkA
1� p

p
ðgpX1Þ:

8<
: ð3bÞ

The model is summarized in Table 1. Survival rate of
typical morph in the absence of cannibalism is assumed
to be one without loss of generality. Survival rate of
cannibal morph is denoted by mo1; representing cost of
cannibal morph strategy.
Hereafter, we consider the payoff as the fitness of each

strategy. For simplicity, we assume no generation
overlap. Then, the frequency of cannibal morph strategy
in the next generation, p0; is written as

p0 ¼
pFC

pFC þ ð1� pÞFT

ð4Þ

and the evolutionary dynamics of two strategies can be
analysed. Both FT and FC are monotone decreasing
linear functions of the frequency p when gpo1: If the
inclination of FC is steeper, FT � FC is decreasing
function of p; which means stable coexistence. However,
as 0omo1 and 0oko1; Ag > mkAg always holds and
thus the relationship will be as illustrated in Fig. 1. For
arbitrary parameter values A;B; g;m; k; there are only
three possibilities: (1) typical morph is always successful
ðmoðA � AgÞ=BÞ; (2) cannibal morph is always success-
ful ðm > A=ðkAgþ BÞÞ and (3) bistable (otherwise). In
other words, if rare cannibal morphs are more successful
than resident typical morphs, cannibal morphs are
always successful regardless of frequency. Thus, the
stable coexistence of two pure strategies is not expected.
This model cannot explain cannibalistic polymorphism
as a stable equilibrium of the game.
Table 1

Energy income and survival rate of each strategy when gpo1

Energy income Survival rate

Cannibal morph
kA

G
p
þ B

m

Typical morph A 1� p � G
1� p

Payoff is measured by a product of them.
2.2. Where does the difficulty come from?

The difficulty comes from the difference in sensitivity
to frequency, i.e. the coefficient of p in the payoff
function. Regardless of the details of the model, both
payoffs are decreasing function of p . For FT ; increase in
cannibal morph means increase in frequency of being
cannibalized, resulting in decrease in survival rate of
typical morph. For FC ; the frequency of potential
victims per cannibal morph is proportional to 1� p;
i.e. decreasing function of p . The other factors, such as
regular food consumption, energy transfer rate, addi-
tional mortality of cannibal morph, etc., are indepen-
dent of frequency of cannibal morph.
In this simplest model, the sensitivity to frequency is

always larger for the typical morph. The reason is as
follows. Frequency-dependent term in the payoff func-
tion is determined by the frequency of cannibalistic
interactions. At each cannibalistic interaction, a typical
morph is killed; however, not all energy lost by typical
morph population is transferred to cannibal morph
population. This is due to conversion factor ko1 and
additional mortality 1� m > 0: Therefore, payoff of
cannibal morph is always less sensitive to cannibalistic
interaction. In conclusion, as long as the payoff of each
strategy is measured by total energy income, stable
coexistence cannot occur. Although the model is very
simple, it grasps the essence. Generally, as long as only
energy balance is considered, at each cannibalism, the
amount of energy lost by typical morph population is
always larger than that transferred to cannibal morph
population. It is because energy conversion factor can
never exceed one, regardless of formulation. Therefore,
in order to explain the coexistence, the biologically
reasonable mechanism should be studied in which the
sensitivity of cannibal morph strategy becomes larger.
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Fig. 2. Schematic illustration of the model with drastic growth effect.
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2.3. Drastic growth effect of cannibalism

Most cannibalistic amphibian populations consist of
many normal-sized individuals and a few very large-
sized individuals, or giants (Pfennig and Collins, 1993;
Wakahara, 1995). Giants are also observed in fish
(LeCren, 1992; Claessen et al., 2000). Giants are those
that succeeded in cannibalism in the early stage of the
growth period. Supposing that all individuals have
similar size at the beginning of growth and that a
cannibal makes use of most of the victim’s body, a giant
will be almost two times as large as normal. Head width
difference between giants and normals is much greater
than difference between typical morphs and cannibal
morphs of a similar size (usually less than 20%). Once
an individual becomes a giant, the next cannibalism
becomes much easier. Subsequent cannibalism most
likely occurs between a giant and a normal. As a result,
once a giant appears in population, advantage of a
cannibal morph strategy becomes negligible compared
with overwhelming size of a giant. Thus, the aim of
taking cannibal morph strategy is thought to be
increasing the probability of becoming a giant by
developing a slightly larger head width. In this paper,
the advantage gained by becoming a giant is called the
‘drastic growth effect’.
Does considering drastic growth effect change the

form of frequency dependence? If a cannibal morph
individual succeeds in cannibalism to become a giant, it
receives great reward, while it pays only cost if it cannot
become a giant. When the frequency of cannibal morph
is larger, the probability of becoming giant is presum-
ably smaller. Therefore, considering drastic growth
effect, the sensitivity of cannibal morph’s payoff to the
frequency might be increased. In the next section, the
possibility of stable coexistence is studied in a model
with drastic growth effect.

2.4. Extended model with drastic growth effect of

cannibalism

Here, we consider an extended model of population
with giants (Fig. 2). Growth period is split into two
phases: no giant phase and giant normal phase. In the
first phase, the population consists of typical morphs
and cannibal morphs both of which have similar body
size. The existence of giants is neglected. Individuals
who performed cannibalism become giants in the second
phase. Individuals who did not perform cannibalism but
survive the first phase become normals in the second
phase. As cannibalism is monopolized by giants, the
type of morph of a normal individual in the first phase
does not change the final payoff. The initial population
size is taken as one without loss of generality. As a
framework, we consider the general case in which both
morphs potentially perform cannibalism in the first
phase. It is natural to assume that the likelihood of
cannibalism is determined by head width difference. So,
it is assumed that the probability of cannibalism among
the same morphs is the same. Let c as probability of
cannibalism among the same morph and c0 as prob-
ability of cannibal morph eating typical morph. Note
that the initial difference in head width precludes the
possibility of typical morph eating cannibal morph. Let
CXY be the frequency of cannibalism where a morph X

cannibalizes a morph Y : In order to calculate CXY ; an
encounter rate must be defined, which is assumed to be
included in c and c0: The frequencies of cannibalism are
denoted by

CCC ¼ cp2; ð5aÞ

CCT ¼ 2c0pð1� pÞ; ð5bÞ

CTC ¼ 0; ð5cÞ

CTT ¼ cð1� pÞ2; ð5dÞ

respectively. Here, we assume that cannibalism in the
first phase does not occur very often and can neglect the
possibility of extinction of typical morph. In the first
phase, no individual cannibalizes more than twice. Thus,
CXY represents the frequency of cannibals and victims.
The frequency of cannibal morphs which succeed in
cannibalism, i.e. become giants is

GC ¼ CCC þ CCT : ð6Þ

The frequency of typical morphs which become giants is

GT ¼ CTT : ð7Þ

The frequency of cannibal morphs which are canniba-
lized is

DC ¼ CCC : ð8Þ

The frequency of typical morphs which are cannibalized
is

DT ¼ CCT þ CTT : ð9Þ

Payoff of a normal individual is taken as one without
loss of generality. Payoff of a giant is g > 1: As in the
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Fig. 3. Analytic result of the case c ¼ 0 and c0 ¼ 0:1: (a) Conditions
for stability (bold line), p� ¼ 1 (solid line) and p� ¼ 0 (dashed line) are

shown in ðg;mÞ space. Parameter region where a stable equilibrium

0op�o1 is realized is shown by shaded area. (b) Corresponding p� is

shown in three-dimensional graph. Only 0op�o1 surface is drawn.

Five contour lines drawn in the bottom of the graph correspond to

p ¼ 0; 0:25; 0:5; 0:75 and 1.0, respectively. Notched line corresponds to

a stability condition where p�-7N: Beyond the stability condition,

p� becomes unstable equilibrium, which means bistability.
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previous model, natural survival rates of typical and
cannibal morphs in the first phase are assumed to be 1
and m; respectively. Finally, payoff functions are
calculated as follows:

FC ¼
1

p
½GCg þ ðp � GC � DCÞ�m

¼m½ðcg � 2c0g � 2c þ 2c0Þp þ 2c0ðg � 1Þ þ 1�; ð10aÞ

FT ¼
1

1� p
½GT g þ ð1� p � GT � DT Þ�

¼ ð�cg þ 2c � 2c0Þp þ cg þ 1� 2c: ð10bÞ

2.5. Analysis of a simple case

First, we deal with the special case of c ¼ 0; i.e.
cannibalism in the first phase occurs only between
cannibal morph and typical morph. We also assume
fitness of a giant g is constant. Then, payoff functions
are

FC ¼ �2mc0ðg � 1Þp þ mf2c0ðg � 1Þ þ 1g; ð11aÞ

FT ¼ �2c0p þ 1; ð11bÞ

which are linear functions of p with the coefficients now
depending on g: Difference in payoffs is

FC � FT ¼ � 2c0fmðg � 1Þ � 1gp

þ mf2c0ðg � 1Þ þ 1g � 1: ð12Þ

Thus, equilibrium p� is

p� ¼
mf2c0ðg � 1Þ þ 1g � 1

2c0fmðg � 1Þ � 1g
: ð13Þ

For any 0op�o1; p� is stable if and only if

m >
1

g � 1
: ð14Þ

When this stability condition holds, p� > 0 holds if and
only if

m >
1

2c0ðg � 1Þ þ 1
: ð15Þ

Similarly, when the stability condition holds, p�o1
holds if and only if

mo1� 2c0: ð16Þ

These three conditions (Eqs. (14)–(18)) and correspond-
ing p� value are illustrated in Fig. 3. All three curves
intersect at ðg;mÞ ¼ ðð2� 2c0Þ=ð1� 2c0Þ; 1� 2c0Þ: The
p� ¼ 0 curve is monotonically decreasing for g > 1:
Therefore, the necessary condition for a stable coex-
istence solution to exist is

g >
2� 2c0

1� 2c0
: ð17Þ
2.6. Relaxing the assumptions

In this section, we relax the two assumptions.
(A) constant fitness for giants and (B) c ¼ 0: In
order to keep the model tractable, we deal with
the special case of c; c051 and apply approxima-
tion. In other words, only few cannibalisms occur in
the first phase. Let gðqÞ and nðqÞ be payoffs of a giant
and a normal, where

q ¼
mGC þ GT

mðp � DCÞ þ ð1� p � DT Þ

¼
mcp2 þ 2mc0pð1� pÞ þ cð1� pÞ2

mðp � cp2Þ þ f1� p � 2c0pð1� pÞ � cð1� pÞ2g
ð18Þ

is frequency of a giant in the second phase. The
denominator represents the initial population of the
second phase while the numerator represents the
frequency of giants. Due to c; c051 assumption, q51
holds. Applying the arguments leading to Eq. (3), the
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Fig. 4. Analytic result of the case c; c051: (a) Conditions for stability
(bold line), p� ¼ 1 (solid line) and p� ¼ 0 (dashed line) are shown in

ðc;mÞ space. Parameter region where a stable equilibrium 0op�o1 is

realized is shown by shaded area. g ¼ 6; a ¼ 2: (b) Analytic result of
the case c ¼ 0:01 and c0 ¼ 0:02: Equilibrium p�; contour lines and a

stability condition are shown as in Fig. 3b.
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actual forms of #gðqÞ and #nðqÞ becomes

#gðqÞ ¼ kAgþ B � kAgq; ð19aÞ

#nðqÞ ¼ A � Agq; ð19bÞ

where we have used gqo1: Additional mortality of a
giant is assumed to be zero. The relative fitness of a giant
to a normal is

g ¼
kAgþ B � kAgq

A � Agq

E kgþ
B

A
� kgq þ kgþ

B

A

� �
gq: ð20Þ

Notice that gðqÞ can be written as a linear function of the
infinitesimal variable q: Putting these results into
Eq. (4.6) we get

FC ¼ m½ðcg � 2c0g � 2c þ 2c0Þp þ 2c0ðg � 1Þ þ 1�; ð21aÞ

FT ¼ ð�cg þ 2c � 2c0Þp þ cg þ 1� 2c: ð21bÞ

In these equations, g always appears in a product with c

or c0; which are small by assumption. Therefore, to the
first order we can neglect the dependence of g on q:
Putting

gEkgþ
B

A
ð22Þ

into Eq. (21) yields

FC � FT ¼ ½mfcg � 2c0g � 2c þ 2c0g � f�cg þ 2c � 2c0g�p

þ mf2c0ðg � 1Þ þ 1g � ð1þ cg � 2cÞ:

Thus, equilibrium p� is

p� ¼
mf2c0ðg � 1Þ þ 1g � ð1þ cg � 2cÞ

�mfcg � 2c0g � 2c þ 2c0g þ f�cg þ 2c � 2c0g
:

ð23Þ

For any 0op�o1; p� is stable if and only if

m >
ð2a � 1Þ þ ðg � 1Þ
ð2a � 1Þðg � 1Þ þ 1

; ð24Þ

where a � c0=c > 1: When this stability condition holds,
p� > 0 holds if and only if

m >
1þ ðg � 2Þc
2acðg � 1Þ þ 1

E1þ ðg þ 2a � 2� 2agÞc: ð25Þ

Similarly when the stability condition holds, p�o1
holds if and only if

mo
1� 2c0

1þ cðg � 2Þ
E1� ðg þ 2a � 2Þc ð26Þ

when 1þ cðg � 2Þ > 0:When 1þ cðg � 2Þo0; the sign of
the inequality is reversed. These three conditions
(Eqs. (24)–(26)) are illustrated in Fig. 4. p� ¼ 0 line
and p� ¼ 1 line intersect at ðc;mÞ ¼ ð0; 1Þ: The difference
in the inclination of the two lines in ðc;mÞ space is

� ðg þ 2a � 2Þ � ðg þ 2a � 2� 2agÞ

¼ 2ða � 1Þðg � 2Þ
and thus, when following conditions

2ða � 1Þðg � 2Þ > 0 and 1þ cðg � 2Þ > 0

hold, there is region in the ðc;mÞ parameter space where
0op�o1: The area of this region increases with a or g:
If g > 2; these conditions are always met as a > 1:
Moreover, as the right hand of Eq. (24) is a decreasing
function of g; there always exists 0omo1 which meets
the stability condition if g > 2: Therefore, the condition
for a stable coexistence is

g > 2: ð27Þ

Note that Eq. (17) converges to Eq. (27) when the first-
order approximation for c0 is applied.

2.7. Numerical calculation

Without applying any approximation, Eqs. (18)–(21)
are directly numerically calculated by computer. When
c; c051 condition is relaxed, payoff function becomes a
complicated nonlinear function of p: A stable equili-
brium is searched numerically (Fig. 5). The search was
done for an appropriate region in ðg;mÞ space and the
stable coexistence region is achieved (Fig. 6). Validity of
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analysis in the previous sections is confirmed. All
coexistence solutions are found at g > 2: Moreover, the
general tendency remains the same that coexistence
more likely occurs when c0=c or g is larger.
3. Discussion

The stable coexistence of cannibal and typical morphs
can be explained by introducing drastic growth effect of
Fig. 5. Difference in payoff of cannibal and typical morphs, FC � FT ;
is shown against frequency of cannibal morph, p: In this case (c ¼ 0:1;
c0 ¼ 0:2; k ¼ 0:5; g ¼ 4; A ¼ B ¼ 1; m ¼ 0:45), both unstable (open

circle) and stable (filled circle) equilibriums exist. The p� value of stable
equilibrium is numerically obtained.

Fig. 6. Numerically derived stable coexistence solution is shown as in Fig. 3b.

food consumption A ¼ B ¼ 1: g is varied to change payoff of a giant. The

c0 ¼ 0:02 (corresponding to Fig. 4a), (b) c ¼ 0:01; c0 ¼ 0:1 and (c) c ¼ 0:05;
cannibalism. The intuitive reason for coexistence is as
follows. To grasp the mechanism easily, assume that the
typical morph does not perform cannibalism, g (payoff
of a giant) is a constant and the frequency of
cannibalism is very small in the first stage. In addition,
assume that payoff is linear function of p (frequency
of cannibal morph). Survival rate and hence payoff
of typical morph decreases as p increases with the
coefficient X ; which corresponds to loss of life. Payoff of
a cannibal morph is also decreasing function of p; whose
coefficient is Y : Y represents benefit received by a
cannibal after cannibalism. The important point is that
Y is not the amount of energy (or meat or nutrition,
etc.) but the social standing of being a giant. As long as
Y is considered as energy, the conversion rate cannot
exceed one and thus X > Y always holds. Coexistence
cannot occur when X > Y as we have argued above.
Cannibalism in the early stage gives very large social
profit to a cannibal, which is exactly what Y means.
Then, Y can be larger than X : So, in a sense, the drastic
growth effect model is a k > 1 version of the simplest
model. Drastic growth effect explains how k can exceed
one. This is the essential mechanism of coexistence of
cannibal and typical morph strategies in our model.
At polymorphic equilibrium, cost and benefit of

cannibal morph should be balanced, which has been
discussed a lot. For example, population density
(encounter rate g) or the ability to cannibalize (c0 or a)
increases equilibrium frequency of cannibal morph. The
present study focuses upon stability of polymorphism
Energy transfer coefficient is fixed at k ¼ 0:5: Energy gain from regular

shown interval gA½0; 10� roughly corresponds to gA½1; 6�: (a) c ¼ 0:01;
c0 ¼ 0:1:
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and we conclude that cannibalistic polymorphism
occurs when fitness of a giant is larger than two. If
energy conversion rate is 0.5, performing two cannibal-
isms doubles a cannibal’s size. In real salamander larvae
population, there are only a few cannibals. In Ambys-

toma tigrinum, no more than one cannibal appeared per
aquarium containing 16 larvae (Pfennig and Collins,
1993). In Hynobius retardatus, there were 102 typical
morphs and 17 cannibal morphs (Wakahara, 1995).
From such fact, one can guess that a few (around 10%)
cannibals monopolize cannibalism and one can easily
imagine that fitness of these despots is much larger than
the others.
Cost of cannibal morph in our study is assumed to be

additional mortality only. It is important to distinguish
the cost of performing cannibalism from the cost of
having cannibal morph. Cannibal morph is less likely to
be attacked by conspecifics and thus the strategy in
which an individual develops as a cannibal morph but
does not perform cannibalism, is adaptive when the cost
of performing cannibalism is greater than the benefits.
Therefore, the induction of typical morph cannot be
explained without regard to the cost of having cannibal
morph (Wakano et al., 2002). Eating relatives or
pathogen infection are the cost of performing cannibal-
ism and should not be considered as the cost of cannibal
morph in our model. It is reported that the imbalanced
body shape of cannibal morph causes a change in
behavior or decline in swimming speed, which results in
increased risk of predation by natural enemies (Koh-
matsu et al., in preparation). It is also known that
cannibal morph is slow to metamorphose under drying
condition (Rose and Armentrout, 1976; Kohmatsu et al.,
in preparation). On the other hand, cannibal morph fed
with only regular food grows as quick as typical morph
(Kohmatsu et al., 2001). Thus, in our model, additional
mortality is considered as the cost of cannibal morph.
In the model, growth period is assumed to consist of

two phases. In the first phase, cannibalisms mostly occur
between cannibal morphs and typical morphs and the
existence of giants are neglected. Therefore, we assumed
that cannibalism in the first phase does not occur very
often. In the second phase, most cannibalisms are
performed by giants and cannibalism among normal
individuals are neglected. The last assumption can be
justified by the following argument. For normal
individuals, potential victims of cannibalism are as large
as cannibals, which means long handling time and thus
the vulnerability to predators. Under the existence of a
giant, such vulnerability is too costly and cannibalisms
among normals might be suppressed. It is also assumed
that growth period consists of two discrete phases and
that there is only one opportunity of cannibalism at the
end of growth period. These are introduced just for
mathematical simplicity and do not seem very realistic
because cannibalisms in reality are performed by many
individuals in continuous time space. However, dealing
continuous time directly makes the model very compli-
cated, so we decided to keep the model as simple as
possible to achieve the result analytically. As a candidate
of the full model, we could assume a ‘normal’
population and a ‘giant’ population and define the
probability of the transition in continuous time space.
At each cannibalism, a victim is removed from a
‘normal’ population and a cannibal is moved from
‘normal’ into a ‘giant’ population. However, the
probability of cannibalism is dependent on the frequen-
cies of cannibal morph, typical morph and a giant.
Thus, this process is not Markov chain, which makes
analysis of the system very difficult. Computer simula-
tion might be able to be performed, which is left for
future works.
Conditions for coexistence of two morphs is indepen-

dent of regular food abundance. The result is achieved
under the assumption of constant regular food con-
sumption rate. Relaxing this assumption may cause the
escape effect from intense competition for regular food
and may increase the possibility of the coexistence
(Pfennig, 1992; Maret and Collins, 1997).
We studied the game model of two pure strategies and

the condition for the stable coexistence is shown. In
order to explain the observed cannibalistic polymorph-
ism by evolutionary scenario, two points should be
discussed. The first point is the relationship between the
payoff and fitness. It is natural to assume that the body
size at the end of larval period has positive correlation
with the adult survival rate and the number of offspring.
Cannibalism on adult stages is generally rare in
amphibians (Crump, 1992), suggesting that it is the
adult size rather than the type of morph in the larval
period that affects fitness directly. To the author’s
knowledge, there is no evidence of the dependence of
reproductive success on the morph itself in fish. The
second point is the relationship between tactics and
strategies. In evolutionary biology, strategy must have
genetic basis. Phenotypic trait without genetic basis is
called tactic in general. However, as is discussed in the
introduction, genetic basis of the morph determination
is unclear. The study showing difference in allozyme
frequency does not necessarily indicate an allelic
dimorphism on a locus (or loci) concerning the morph
development. For example, different migration rate
among morphs or assortative mating can also result in
the difference in allozyme frequency. On the other hand,
the observed phenotypic plasticity of morph determina-
tion does not necessarily deny the existence of genetic
basis of morph determination. Further experimental
study would be necessary for the point.
Under the assumptions of the model, the present

study implies that the coexistence of two strategies can
be established as an evolutionarily stable state. As
genetic background of cannibalism is unclear, we
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assumed two pure strategies. However, evolution of
single mixed strategy can also be analysed with few
alterations to the present model and the result will not
change. Moreover, all analytic result not only shows
that coexistence is evolutionarily stable but also shows
that the convergence to the stable state is guaranteed
because the payoff is a linear function of frequency.
Considering drastic growth effect, sympatric cannibalis-
tic polymorphism can be explained as an evolutionary
consequence.
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