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Phase transition of traveling waves in bacterial colony pattern
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Depending on the growth condition, bacterial colonies can exhibit different morphologies. Many previous
studies have used reaction diffusion equations to reproduce spatial patterns. They have revealed that nonlinear
reaction term can produce diverse patterns as well as nonlinear diffusion coefficient. Typical reaction term
consists of nutrient consumption, bacterial reproduction, and sporulation. Among them, the functional form of
sporulation rate has not been biologically investigated. Here we report experimentally measured sporulation
rate. Then, based on the result, a reaction diffusion model is proposed. One-dimensional simulation showed the
existence of traveling wave solution. We study the wave form as a function of the initial nutrient concentration
and find two distinct types of solution. Moreover, transition between them is very sharp, which is analogous to
phase transition. The velocity of traveling wave also shows sharp transition in nonlinear diffusion model,
which is consistent with the previous experimental result. The phenomenon can be explained by separatrix in
reaction term dynamics. Results of two-dimensional simulation are also shown and discussed.
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I. INTRODUCTION are mixed might evolve. Discontinuous change of TWS is

Cooperative self-organization of bacterial colonies han€ of the keys which describes the formation of spatial pat-

been intensively studied both experimentally and theoretil€"MS: . . .
It is experimentally known that some bacterial strains be-

lly [1-8]. Th i f th tudi hould b id
cally [1-§]. The series of these studies should be consi eregqnging to the genuBacillus or Paenibacillusproduce very

as a part of the large stream where we pursue the univers : . .
comprehension of pattern formation. One of the most im.complicated and clear patterns, i.e., branching. One charac-

pressive and illustrating way of study is to perform numeri-t€ristic of the genus is the ability to sporulate. Spores are
cal calculation of nonlinear partial differential equations in Inactive and dormant state of cells, which can survive star-

multiple-dimensional space to show various beautiful pat_vation or dry environment. Bacteria species with sporulation

: o ability produce the complex patterns of spore distribution.
terns[9-14. However, they are so complicated and it is V€Y previous theoretical studies revealed that colony pattern is

difficult to u_nderstand why a certain pattern is achi_eved Onlybest understood when we consider the pattern as the history
for appropriate parameters. Another effective way is to study . e pacteria density. Spores are the history of bacteria

a simple element extracted from the complicated system. IRty and sporulation is an important process in which
this study we focus on traveling wave solutioRVS) which  4ctive bacteria density is recorded in the history. Many mod-
is a very simple pattern formation in which a fix-shapedes of bacterial colony pattern formation assume sporulation,
wave propagates at a constant velocity. TWS often existaowever, there are few experimental studies that measured
even in the nonlinear reaction diffusion model which pro-the sporulation rate.
duces complicated pattern under appropriate condition. TWS Mimura et al. suggested a model with linear diffusion and
is clearly one of the most important element of pattern for-nonlinear reaction termgl4]. The model has the ability to
mation and some analytical works have already been done aeproduce four out of five observed patterns of bacterial
the study of bacterial colony pattern formatiptb,1q. colony. Mathematically, the ability comes from the separatrix
Cohenet al. reported that colony expanding velocity in- in reaction term dynamic& dynamical system where diffu-
creased as the initial nutrient concentration increased in theion terms are neglectedds Mimuraet al. describe in their
experiment3]. Moreover, they reported the sharp change inpaper, the model is constructed so that reaction term dynam-
the functional form of velocity as a function of nutrient level. ics is an excitable system. When the global behavior of the
The function was discontinuous at the point where two-trajectory discontinuously changes depending on the initial
dimensional pattern changed. Although the observed twopoint (i.e., separatrix this may produce very strong nonlin-
dimensional colony growth was not simple traveling wave,ear effect. Biologically, however, separatrix in Mimura
this study implies that the discontinuous change of TWSmodel is not very realistic. It assumes that sporulation rate is
might be the source of the pattern formation. If a travelinga decreasing function of nutrient and bacteria density. As
wave propagates at a constant velocity everywhere, the reswudporulation is considered as adaptation to environmental de-
should be simple disklikétwo-dimensiongl or spherelike terioration, the rate is biologically expected to be high when
(three-dimensionabpattern. Experimentally observed diverse nutrient density per bacterium is low, if it depends on bacte-
spatial patterns imply that the propagating velocity or theria density. Anyway, without the experimental data of sporu-
form of interface varies depending on the local properties|ation rate, it is impossible to build a biologically reasonable
e.g., curvature or nutrient concentration. If the system hasnodel.
two distinct TWSs both of which are quasistable but not In this study, we first present the experimentally measured
globally stable, the spatial pattern in which the two TWSssporulation rate of bacteria as a function of the initial nutri-
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FIG. 2. The ratio of spores to total cells plotted vs the initial
nutrient concentration. When nutrient concentration is very small,
bacteria do not sporulatél=3.0 g/L is best suited for sporulation.
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FIG. 1. Optical micrographs dB. circulans after 48 h incuba-
tion; (@) N=0 g/L and(b) N=4.5 g/L, respectively. Each scale bar
indicates 5um. The arrows indicate a vegetative cell and a spore.

) o o coated with four-layered hard protein. The coated DNA is
ent. Due to the experimental difficulty, the quantitative rela-c5jjeq a “forespore.” After a forespore matures, the parent

tionship between sporulation rate and reproduction rate iSq|| releases the forespore, which is called an “endospore”

unclear. The relationship can be qualitatively classified imoand can survive long periods of time in the bad environment.
three cases. Based on the experimental result, we ProPO§¢ chort as bacteria cannot replicate their DNA under

three types of models. One of them has separatrix in its re- trient-free condition, they cannot sporulate.

action term dynamics while the others do not. We perform The ratio of spores to total cells was observed under the
one-dimensional computer simulations to study the existence P

of TWS and the dependence of the wave form and velocit)yarious initial nutrient congentratig(Fig. 9). Predictably,
on the initial nutrient concentration. Linear diffusion and '€W sporeshgrﬁ formid at_g%h r;utne?thleverl]. Thhe numbefr of
nonlinear degenerate diffusion are studied. Results of twoSPOres Is highest w eN=3.0¢g .L' Although the ratio o
dimensional simulation are also shown. spores is not equal to sporulation rate, the result strongly
suggests that sporulation rate as a function of nutrient con-
centration has a single peak at a certain nutrient level.
Spores are observed about 23 h after the inoculation. By
In order to Study sporu|ation rataaci||us bacteria were this duration Sporulation rate is estimated to be much smaller
incubated in the liquid culture medium and the number ofthan reproduction rate whose increasing time constdmi-
total cells and the ratio of spores were measu#gapendix ~ bling time) is estimated 1.0-1.5 h from the analysis of the
A). Total density of both activévegetativg cells and spores growth curve in early stage. However, as long as the pattern
increased exponentially in the first 5(data not shown  dynamics of bacterial colony is concerned, spores are defined
This result is consistent with the previous work that the cell@s inactive cells which cannot reproduce. As we could dis-
division of active bacteria is assumed to be a first-order retinguish only endospores, it is presumable that time when
action: db/dt=kb. Reaction rate coefficierk is estimated Vegetative cells transform into forespores is much earlier
from the data of exponential growth stage. The dependend&an the time of our observatidi7]. So we measured the

Il. EXPERIMENTS AND RESULTS

of k on the initial nutrient concentratioN, well fits a well- ~ concentration ofa-amylase in liquid culture, which is ex-
known Michaelis-Menten-type function tracted by bacteria only when they sporulate into a forespore
[18]. The drastic increase af-amylase concentratiofdata
_ KmaxCn not shown suggests that formation of forespores occurs
K+Cy\' about 6—8 h after inoculation. The result implies that sporu-

) 1 lation rate might be as large as reproduction rate for a certain
where constant parameters are estimatedias=0.6 "=and  jnerval of nutrient concentration. The result also implies that

K=2.2.g/L, r_espectively. . . , sporulation and germination process’s take a long time and
We investigated the relationship between sporulation angha¢ g spore returned to the vegetative phase in our experi-

, to evaluate the quantitative relationship be-

bad environmental conditions such as nutrient starvation ogyeen reproduction rate and sporulation rate, further experi-
drying, sporulation rate has been considered as a decreasifjghntg) analysis is necessary.

function of nutrient concentratiofiL4]. However, as shown

in Fig. 1, few spores are formed under nutrient-free condition
even after 48 h incubation. Thus we suppose that bacteria
require some nutrient in order to sporulate. Biological
knowledge of sporulation process supports the hypothesis A. Reaction term dynamics

[17]. In sporulation, DNA in a bacterial cell is replicated as

in regular cell division. Inside the parent cell, one of them is  First, we consider a model without spatial structure,

Ill. MODELS AND RESULTS
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FIG. 4. The phase plane analysis of the modsée text Dot-
ted lines represent isocline&) Models 1 and 2 have only one

@ = a(n)b, (1) isocline and their vector fields are qualitatively the sathgModel

dt 3 has three isoclines. Numerical calculation suggests the existence
of separatrix around the critical initial valug. Two orbits starting

ds from the initial values which are lower and higher than the critical

a B(nb, value are shown.

where b,n, and s represent the density of active bacteria hausted. When the initial nutrient concentration is higher
(vegetative cellg nutrient concentration, and the density of than the critical value, almost all nutrient is consumed before
spores, respectivelyx(n), B(n), and y correspond to repro- active bacteria disappear. We present the mathematical proof
duction rate, sporulation rate, and death rate, respectivelpf the existence of the critical value in Appendix B.
For simplicity, we assume that these rates do no depend on We focus on the separatrix of model 3. It is natural to
bacteria density. As for reproduction rate, Michaelis-Menten-question whether the separatrix still exists when spatial dif-
type equation, fusion is introduced. Furthermore, such a model may repro-
duce the observed sharp change of traveling wave velocity.
_a N The two-dimensional spatial pattern is also of great interest.
a(n)=c, , . ; i
n+1 These motivated us to construct a model with spatial struc-

. . _ ) . ture based on model 3.
is known to be appropriate for various bacteria species. The

natural death of the bacteria is not commonly observed. B. Linear diffusion model
However, as spores are the special dormant state of bacteria,

it is reasonable to assume that active bacteria cannot survive Fi'St; we introduce linear diffusion

starvation. For simplicity, we assume the constant death rate b

of active bacteria;y which is set to very low values com- — =DV%+ a(n)b-B(n),

pared to sporulation rate. The unit of bacteria concentration It

is rescaled so that nutrient conversion factor is 1. Our experi- )
ment suggests that sporulation rate is zercma0,» and an =V - a(n)b

takes the maximum value at a certain nutrient concentration. at ’

Due to experimental difficulty, the quantitative relationship e - . .
between sporulation rate and reproduction rate is unclea hereD rep(esents diffusion cogfﬂment of active pactgr!a.
Therefore, a large degree of freedom exists to determine th OT]e exr?irl’limrimil lr(:cf[w)l(?dg? ;ﬁ nsglec;zdnfor Sﬂ?“i”ﬁ |
actual form of 8(n). Qualitatively, there are three possible such as nutrient chemotaxis or thé dependence of bacteria

. . : ) Do activity on local nutrient concentration. Due to the simplifi-
relationships(Fig. 3): (a) sporulation is always slower than

) o . cation, D is constant and the model becomes easy to deal
reproduction(b) sporulation is faster than reproduction only . . X .

) / L with. Under appropriate rescaling of time and space, diffu-
when nutrient is poor, an¢c) sporulation is faster than re-

. o . sion coefficient of nutrient can be chosen as one without loss
production only for a certain interval of nutrient concentra- ; : : .
fion of generality. The density of sporasis dependent variable

In order to investigate the global behavior of these thre and is not analyzed here. We assume the sporulation rate to

models, we perform phase plane analysis. Vector field oeril)e a normal function:

(b,n) space is qualitatively determined, regardless of actual

function form(Fig. 4). In models 1 and 2, it is obvious that a(n) = C“nTl'
the infinitesimal perturbation of the initial state only affects
the terminal state infinitesimally. On the other hand, numeri- () = ¢ expi= o(n - N2+ 4}
cal calculation suggests that separatrix exists in model 3. AN =cp 7 g T

When the initial nutrient concentration is lower than a criti- For the sake of simple notification, death rate is included in
cal value, all bacteria sporulate or die before nutrient is ex;3(n). Constant paramete(s,,Cz,Nng, ) are chosen so that a

©)
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a) N=0.485 b) N=0.490 c) N=0.495 a) N=0.64 b) N=0.65

Time
Time

Spatial position Spatial position

FIG. 5. Results of the numerical calculation of linear diffusion  FIG. 7. Results of numerical calculation of nonlinear diffusion
model(D=1). The spatiotemporal patterns of bacteu@per row model (D=1). Scales are different for ead¥. (a) N=0.64,(b) N
and nutrient(lower row) are shown. Horizontal and vertical axes =0.65, and(c) N=0.95.
correspond to spatial position and time, respectively. Brightness

represents densitgconcentration of bacteria(nutrieny, scales of words, a wave becomes twofdlBig. 5c)]. Moreover, at the
which are kept constanta) N=0.485, (b) N=0.490, and(c) N same critical valué\*, nutrient concentration left behind the
=0.495. wave sharply changedrom 0.24 to 0.0026 This critical
_ . __initial value N* is estimated as 0.485N*<0.49. The result

model corresponds to model 3 in the preceding sectiong,ggests that according to the initial condition this system
In_all numerical calculations, we put(c,,CsNs %) have two phases, a singlefold traveling wave leaving some
=(0.3,0.1,0.3,0.01Crank-Nicholson scheme is applied t0 amount of nutrient behind and a twofold traveling wave leav-
calculate diffusion term with zero flux boundary condition. jng |ittle nutrient behind. We conclude that the separatrix in
Initially, nutrient is uniformly distributed at a levél and the  reaction term dynamics is maintained against introduction of
small amount of active bacteria are put at the origin while nQjnear diffusion.
spore Is present. Surprisingly, however, propagating velocity does not

As a result of numerical simulation of the model in one- gpgw sharp changgFig. 6). To guess the velocity analyti-
dimensional space, traveling wave is formed for most initialca"y’ we derive the linear spreading velocity bfin the

conditions. However, we found interesting behavior for ajinearized equation about the unstable stéten)=(0,N)
certain small parameter regigiig. 5. WhenN is smaller [19]

than the critical valud\*, a bacterial wave has a single peak

[Fig. 5@]. WhenN is larger thanN*, a new wave appears ab
behind the original wavéFig. 5b)]. A wave in the back P =DV%+Sh,
propagates initially slower, but when the distance between

two waves reaches a certain value, a wave in the back begins

to propagate at the same velocity as the fore wave. In other an

=V2n- a(N)b, 4
Py (N) 4)
0.8 4= ,A___%l T T T — 903
07} 3 o1 3 S=a(N) - B(N),
z g in which the first equation is the linearized Fisher-
s 06 7 0.01 g Kolmogoroff equation whose linear spreading veloditis
o : 2 i
§ 05 | AA\ i E c=SD, (5)
’ . 40001 &
S £ when the initial condition has a compact support. The nu-
W = merical calculation shows that the velocity of TWS in the
0.4 1 TN TR 0.0001 nonlinear modelEg. (2)] is equal to the linear spreading
04 05 06 07 08 09 f velocity (Fig. 6). This means that the wave has a “pulled

Initial nutrient concentration front” in the sense that the global nonlinear dynamics of the

FIG. 6. Velocity of traveling wavécircle), velocity of that in the f[raveling wave is govt?med by the dynamics around the |_ead'
linearized systentbold line), and nutrient concentration left behind NG edge where the linearized system is a good approxima-

the wave(triangle) are shown against the initial nutrient concentra- tion _[19]- This might be th_e reason yvhy the veloci_ty is a
tion. The phase transition of the wave form occurs at the criticaicontinuous function of the initial nutrient concentration de-

initial nutrient concentration while the wave velocity changes con-spite the existence of the separatrix in reaction term dynam-
tinuously and smoothlyD=1. ics.
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C. Nonlinear diffusion model a)

Nonlinear diffusion coefficient has been first applied to
bacterial colony pattern problem by Kawasadti al. [10].
Biologically, such diffusion is considered as a result of co-
operative cell motion. There are several evidences of cell-
cell signal exchange and it is natural to consider that bacte-
rial diffusion is not simple linear diffusion of bacteria.
Mathematically, the following Fisher-Kolmogoroff equation
with nonlinear diffusion is well studied:

Z_l:: V (D(u) Vu) +u(l-u). (6) l

When D(u)=u, a complete analysis has been carried out
[20-22 while more general problems are also intensively
studied[15,23-25. Whenu=0, the diffusion term vanishes
and the equation degenerates into an ordinary differential
equation. So this type of equation is often referred to as
nonlinear degenerate parabolic equation. In relation to singu-
larity of u=0, a characteristic solution is known in this sys-
tem. The TWSu(x,t)=U(x—ct)=U(z) satisfying

U-»)=1, U@=0 Oz=7, U'(Z)#0, Z'<+x

is called as the TWS of sharp type. In this solutios,0 in
front of the wave front{z=Zz") while u>0 behind the front
(z<Z". In the linear diffusion equation, on the other hand, FIG. 8. Wave form of bacteria density in ti@) linear and(b)
only approaches zero as—«. The TWS of sharp type is nonlinear diffusion model¢D=1). Enlarged figures show that the
known to exist in models with various reaction terms andfront is smooth in the linear diffusion model and sharp in the non-
nonlinear degenerate diffusion term. linear diffusion model(a) N=0.495 andb) N=0.95.

We focus on the property of the sharp wave front. The
preceding discussion of linear conjecture of wave velocityintersectsb=0 line. It is confirmed that all TWSs in the
does not hold in such TWS. Therefore, the wave velocity asinear diffusion model are of smooth type and that all TWSs
a function of the initial nutrient concentration may changein the nonlinear diffusion model are of sharp type. As is
sharply as the wave form does. In order to keep the model asxpected from these facts, wave velocity showed sharp
simple as possible, we introduce nonlinear diffusion coeffi-change at both initial conditions where wave form sharply
cient of bacteria, which is a function of only bacteria density.changes[Fig. 9a)]. Notice the remarkable similarity be-

We will study the following equations: tween this and the experimental result of the colony growth
Jb velocity of Paenibacillus dendritiformidacterialFig. Ab)],
— =DV (bVb)+anb-a(n), although in the experiment the growth velocity of compli-
dt cated two-dimensional pattern was measured. Another inter-
(7) esting point is that two types of phase transition, which occur
an = V20— a(n)b at the same time in the linear diffusion model, occur inde-
at @ ' pendently. At the present state, however, we have no analyti-

) . ) cal explanation why two different critical values appeatr.
and perform numerical calculation of the model in one-

dimensional space. We will use the saw@) and 3(n) [Eq. D. Two-dimensional simulation

3.

As a result of computer simulation, traveling wave is al-, N order to study the effect of the phase transition of wave
ways formed(Fig. 7). The separatrix of the wave form re- form and velocity in a two-dimensional version of the model,
mains. Nutrient .cor;centration left behind the wave frontWe Performed numerical calculation. Preliminary simulation
sharply changes at the critical valt\ =0.64. However, a showed that the linear diffusion modggs. (2) and (3)]

wave form remains single wave uniilexceeds another criti- glc_)kes not shov; any sftructured Eatternliotheréhfzfan .S'mpledd'ls'
cal valueN;=0.93. Above the critical value, a wave form "<& patterm. So we focus on the nonlinear diffusion mode

becomes twofold. As is discussed, we are interested in tthqs.(S) and(7)]. The density of sporesis calculated as

asymptotic behavior of the wave front. Global wave form ds
and the detail of the wave front of typical twofold waves in i Cs exp{— a(n-np?. (8)
linear and nonlinear diffusion models are shown in Fig. 8.

The wave front of the linear diffusion model is smooth while Owing to limited computer time, calculation was done in the
that of the nonlinear diffusion model is sharp, convex, andpositive quadrant divided into 20002000 square lattices.
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FIG. 9. (a) Velocity of traveling wavecircle) and nutrient con-
centration left behind the wavériangle) are shown against the
initial nutrient concentration. The phase transition of both the wave
form and the velocity occurd)=1. (b) Experimentally observed
colony growth velocity. Reprinted from Rdf3], Copyright(2004),
with permission from Elsevier.

The response of the pattern to the initial nutrient concen-
tration N is studied(Fig. 10. As a result, four typical pat-
terns are obtained; namely, fine branching, ring, branching,
and dense finger. Whe\ is very low, fine branching pattern
is observed. This pattern is also similar to dense-branching
morphology (DBM) pattern. In experiments, both fine
branching and DBM are observed when the initial nutrient is
low, which is consistent with the present numerical result
[3,26].

When N exceeds the first critical valudl;=0.66, the
whole pattern changes very sharply. Nutrient concentration
left behind changes from 0.35 to 0.002 and the pattern itself
also changes to ring pattern. The corresponding transition in FIG. 10. Results of two-dimensional simulation of nonlinear
one-dimensional simulation has been already described idiffusion model(D=1). Spatial distribution ob+s is shown. The
the preceding section. The result means that the separatriXightness ob is expressed five times stronger than thas.oEx-
originating from the reaction term still remains in two- ceptN=0.7, a branching pattern is formed. A small amount of nu-
dimensional model with nonlinear diffusion. In the ring pat- trient is left behind the front wheN=0.65.
tern, no spore is left behind the bacterial front. There is no
experimental observation which supports this. However, thgattern changes into branching pattern. This change is also
phase transition of two-dimensional pattern is mathemativery sharp, suggesting that it is another separatrix. It seems
cally interesting. that there are two independent traveling waves of bacteria.

When N exceeds the second critical valt§=0.78, the  Only forward wave produces branching pattern and back
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aggregate. It has been unclear why wave front evolves to
active and inactive parts which are so clearly distinguishable.
Based on the existence of separatrix, we here propose a
hypothesis why clear patterns are observed in our model.
From our calculation on the one-dimensional space, it is
naturally expected that the model potentially has two types
of stable states, i.e., a singlefold TWS and a twofold TWS.
The initial condition determines which is realized. Transition
between these states is discontinuous, i.e., separatrix. When
the model is extended to the two-dimensional version, global
TWS may become unstable under some condition. In such
case, spatial heterogeneity may evolve into the mixture of
singlefold and twofold waves, both of which are locally
stable in so small region that the system is approximately
equal to the one-dimensional model in radial direction. The
length of the region along the front line might be determined
by dispersion relation analysis. Separatrix originating from
FIG. 11. Enlarged figure of two-dimensional branching patternthe reaction term produces two distinct areas in the wave

whenN=0.9. front, which moves outward to draw clear branching pattern.
wave, propagating at slower speed, contributes little to the IV. CONCLUSION
global pattern.

WhenN exceeds the third critical valug;=0.89, the two We performed an experiment to determine the sporulation

bacterial waves are combined to form the twofold wave rate as a function of the nutrient concentration. Based on the
while the global pattern does not change very much. Enresult, a reaction diffusion model of bacterial colony growth
larged pattern is shown in Fig. 11. Singlefold and twofoldis proposed. Especially, we focus on separatrix in reaction
waves are mixed along the front line. Twofold wave in bac-term dynamics. We study the effect of separatrix on traveling
terial pattern corresponds to the tip of the growing branch invave solution to find a different behavior; transition between
spore pattern. Twofold wave consists of a fore wave correa singlefold and a twofold wave. The phase transition of the
sponding to the first positive region of net bacterial repro-velocity of the traveling wave shows great similarity with the
duction rate where nutrient is highh>n3) and a back wave previous experiment. Results of a two-dimensional simula-
corresponding to the second region where nutrient is lowion of our model are generally consistent with the observed
(n;<n<n,) [Fig. 4b)]. Spores are produced in the region patterns.

n, <n<nz while bacteria simply die out in the region<n;. In our model withN>Nj, the spatial pattern of spores:
Therefore, most spores are left behind the fore wave, whiclghows clear branching while that of bacteria does not. This
only the twofold wave has. seems inconsistent with the observed patterns, which should

When N is increased further, the pattern gradually be studied in future. The effect of the diffusion coefficient of
changes into dense fingering. In experiments, dense fingerirgytrient, the elimination of the effect of square lattice in
pattern is observed when the initial nutrient is high, too. Innumerical calculation, and the mathematical proof or the ex-
our model, the change is caused by increase in twofold wavBlanation of separatrix in reaction diffusion equation are also
region in the front line. open problems.

There is no unique method to measure the growth velocity As we mentioned at the beginning of the paper, the study
of such complex patterns. When we roughly estimate th&f bacterial colony growth is not only a special biological
velocity as a function of the initial nutrient, it is similar to the topic but also it must be an attempt to explore universal law
result of one-dimensional model. The velocity is very slowOf pattern formation. Good theoretical study suggests new
when N<N:, almost the same wheN; <N<N;, and then biological experiments while a new biological result inspires
increases rapidly wheN> N3, new models. Although bacteria are one of the simplest form

Generally, in branching pattern formation, active spot ex-0f life, they produce so complex patterns. We hope the
ists only at the tip of growing branch. The possible mechapresent study contribute to our comprehension of self-
nism for such spatiotemporal pattern formation is as followsOrganized pattern formation.

First, simple disklike patter(radial traveling wave solution

becomes unstabl_e dug to some nonlinearity in t_he model. APPENDIX A: EXPERIMENTAL METHOD

Such interface instability has been well studied, e.g.,

Mullins-Sekerka dispersion relation in crystal growth theory. There are som&acillus species each of which produces
In the particular field of bacterial colony growth, the inter- the original colony patterns. We us&acillus circulans(B.

face instability of a simple nonlinear model is intensively circulang as a spore forming species, but the qualitative fea-
studied[16,27. Dispersion relation, however, only provides tures of sporulation learned in one species can be applied to
the most unstable wave number and its stability. In order t@notherB. circulanswas incubated in the liquid culture me-
form clear pattern, active spot should be independent distinatium which was prepared by the following methoj@s].
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10 g/L sodium chloride and nutrients with various concen-
tration were dissolved in distilled water. We used Bacto
Tryptone Pepton€TP) and Bacto Yeast ExtragYE) as nu- and

A=0,S (B4)

S=a(n) - Bn), (BS)

trients, which contain vitamin, amino acid, minerals, and car-

bon sources. They were purchased from Difco, Detroit, M1,

USA. The weight ratio was kept TP/YE=2 and the initial

total concentratiomN was varied from 0 g/L to 15 g/L. This

solution was autoclaved for 15 min at 120°C and 2 atm and . |

then cooled down to room temperature. Bacteria, which hatVith €igenvectors

been stored at —20°C to prevent them from mutation, were

preincubated in this liquid culture wittN=15 g/L. After 0 IS

15-18 h preincubation, bacteria density became abotit 10 ( ) and ( )

-10° number/mL while no spore was formed. The bacteria 1 ~a(n)

density was adjusted to about’il@umber/mL and then con-

stant quantity of the solution was incubated in a plastic tubeespectively. The zero eigenvalue means that the equilibrium
filled with fresh liquid culture. The tube was let in the bath points are neutrally stable against perturbation in axis
incubator whose temperature was controlled at 37°C andirection, which is trivial because whole axis is equilib-
shaken during incubation. We adopted batch-type incubationjum. The sign ofS determines whether an equilibrium is a
in which fresh nutrient was not fed during incubation. repeller or an attractor.

We took 5ul of test portion from each liquid culture Here we assume the qualitative relationship betwegn
after 30 h incubation. The total bacteria number in each tesind g(n) is the same as in model 3 in text. According to the
portion was counted by using Thoma blood cell counter angtability, n axis is divided into four subsets; stable line seg-
an optical microscop€x400) and then the bacteria density ment S(0<n<n;), unstable line segment;(n;<n<ny),
was calculated. The ratio of spores to total cells was anastable line segmen,(n,<n<ns), and unstable half line
|yzed by the fO”OWing method. Bacteria in eVery test portion Uz(n3< n) [F|g 4(b)] Asn iS monotonica”y decreasing, any
were stained by Mdller’s spore staining method for the easy, it starting fromU, must enterS,. Let f(p) as a terminal
optical microscopic observation. Optica}l _ micrographspomt of an orbit starting from a poim. According tof(p),
(xlOQO of every sample were taken t_)y a digital camera. Ir_IU2 consists of the following two subsets:
the micrographs, spores and vegetative cells are easily dis-
tinguishable. The ratio of spores were calculated by imaging
software.

Uz ={p e Uxf(p) € S}, (B6)

APPENDIX B: EXISTENCE OF SEPARATRIX Uy ={p e Uxf(p) € S}. (B7)

We consider a dynamical system
db As we proved, any orbit converges to the equilibrium and
- Wb - B(n)b,

Uy =Ujy U Uy, (B8)

(B1)
d—? =-a(n)b,

d U1 NUx=¢,
defined in the positive quadraRf={(b,n):b=0,n=0}. We

(B9)

assumew(0)=0 which guarantees any orbit remainsRA.
The set of equilibrium points of E¢B1) is n axis(b=0). We
assume continuous functiormgn) and B(n) satisfy

O0<a(n<AOn>0, (B2)

0<p1<Bn) < B, (B3)

and thusn is monotonically decreasing function bfThere-
fore, chaos or limit cycle never occurs. Apparentiycannot
diverge so we focus on whethediverges or not. As long as
b>0, n decreases. When=0, db/dt<-3;b holds, which

hold. Hereafter, we prove the following theorem.
Theorem 1. (existence of separatriXhere exists unique
N*>n3 such that

Uz 2{(0,n) € Uin> N7},

Uzz;) {(O,n) S Uz:n3 <n< N*}

Proof. It is geometrically apparent that both,, andU,, are
connected because phase plane is two dimensional and

meansb converges to zero. Therefore, all orbits converge taany two orbits never intersect each other. Appareritly,

the equilibrium points om axis.

Eigenvalues of linear analysis around an equilibriumintersecting orbits.

point (0,n) on n axis are

must be abovdJ,, on n axis; otherwise there should be
The theorem is proved 18,
# ¢ andU,,# ¢ are proved.
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Inclination of an orbit p;=(0,nz). In other words, an orbit starting from a point
_ infinitesimally abovep; must enter a point infinitesimally
db = M below p;, which is an element o%,. Thus,U,,# ¢.
dn a(n) When p— (0,), the orbit starting fromp intersectsn

is bounded forn>n, becausea and B8 are bounded and =ns line at («,ny) as db/dn>0 for n>n;. However, de-
becausax>0 for n>n,. Thus,b can change infinitesimally crease irb is finite in finite interval[n,,n] as inclination of
with infinitesimal change ofh. Moreover,db/dn+0 for n the orbit is finite. Thus, the orbit starting from a point with
#ng. This means thalf(p) —ps| <O(e) if |p—ps| <€, where  very largen must enterS;, which meandJ,, # ¢.(]
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