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Depending on the growth condition, bacterial colonies can exhibit different morphologies. Many previous
studies have used reaction diffusion equations to reproduce spatial patterns. They have revealed that nonlinear
reaction term can produce diverse patterns as well as nonlinear diffusion coefficient. Typical reaction term
consists of nutrient consumption, bacterial reproduction, and sporulation. Among them, the functional form of
sporulation rate has not been biologically investigated. Here we report experimentally measured sporulation
rate. Then, based on the result, a reaction diffusion model is proposed. One-dimensional simulation showed the
existence of traveling wave solution. We study the wave form as a function of the initial nutrient concentration
and find two distinct types of solution. Moreover, transition between them is very sharp, which is analogous to
phase transition. The velocity of traveling wave also shows sharp transition in nonlinear diffusion model,
which is consistent with the previous experimental result. The phenomenon can be explained by separatrix in
reaction term dynamics. Results of two-dimensional simulation are also shown and discussed.
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I. INTRODUCTION

Cooperative self-organization of bacterial colonies has
been intensively studied both experimentally and theoreti-
cally [1–8]. The series of these studies should be considered
as a part of the large stream where we pursue the universal
comprehension of pattern formation. One of the most im-
pressive and illustrating way of study is to perform numeri-
cal calculation of nonlinear partial differential equations in
multiple-dimensional space to show various beautiful pat-
terns[9–14]. However, they are so complicated and it is very
difficult to understand why a certain pattern is achieved only
for appropriate parameters. Another effective way is to study
a simple element extracted from the complicated system. In
this study we focus on traveling wave solution(TWS) which
is a very simple pattern formation in which a fix-shaped
wave propagates at a constant velocity. TWS often exists
even in the nonlinear reaction diffusion model which pro-
duces complicated pattern under appropriate condition. TWS
is clearly one of the most important element of pattern for-
mation and some analytical works have already been done on
the study of bacterial colony pattern formation[15,16].

Cohenet al. reported that colony expanding velocity in-
creased as the initial nutrient concentration increased in their
experiment[3]. Moreover, they reported the sharp change in
the functional form of velocity as a function of nutrient level.
The function was discontinuous at the point where two-
dimensional pattern changed. Although the observed two-
dimensional colony growth was not simple traveling wave,
this study implies that the discontinuous change of TWS
might be the source of the pattern formation. If a traveling
wave propagates at a constant velocity everywhere, the result
should be simple disklike(two-dimensional) or spherelike
(three-dimensional) pattern. Experimentally observed diverse
spatial patterns imply that the propagating velocity or the
form of interface varies depending on the local properties,
e.g., curvature or nutrient concentration. If the system has
two distinct TWSs both of which are quasistable but not
globally stable, the spatial pattern in which the two TWSs

are mixed might evolve. Discontinuous change of TWS is
one of the keys which describes the formation of spatial pat-
terns.

It is experimentally known that some bacterial strains be-
longing to the genusBacillus or Paenibacillusproduce very
complicated and clear patterns, i.e., branching. One charac-
teristic of the genus is the ability to sporulate. Spores are
inactive and dormant state of cells, which can survive star-
vation or dry environment. Bacteria species with sporulation
ability produce the complex patterns of spore distribution.
Previous theoretical studies revealed that colony pattern is
best understood when we consider the pattern as the history
of active bacteria density. Spores are the history of bacteria
activity and sporulation is an important process in which
active bacteria density is recorded in the history. Many mod-
els of bacterial colony pattern formation assume sporulation,
however, there are few experimental studies that measured
the sporulation rate.

Mimura et al.suggested a model with linear diffusion and
nonlinear reaction terms[14]. The model has the ability to
reproduce four out of five observed patterns of bacterial
colony. Mathematically, the ability comes from the separatrix
in reaction term dynamics(a dynamical system where diffu-
sion terms are neglected). As Mimuraet al. describe in their
paper, the model is constructed so that reaction term dynam-
ics is an excitable system. When the global behavior of the
trajectory discontinuously changes depending on the initial
point (i.e., separatrix), this may produce very strong nonlin-
ear effect. Biologically, however, separatrix in Mimura
model is not very realistic. It assumes that sporulation rate is
a decreasing function of nutrient and bacteria density. As
sporulation is considered as adaptation to environmental de-
terioration, the rate is biologically expected to be high when
nutrient density per bacterium is low, if it depends on bacte-
ria density. Anyway, without the experimental data of sporu-
lation rate, it is impossible to build a biologically reasonable
model.

In this study, we first present the experimentally measured
sporulation rate of bacteria as a function of the initial nutri-
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ent. Due to the experimental difficulty, the quantitative rela-
tionship between sporulation rate and reproduction rate is
unclear. The relationship can be qualitatively classified into
three cases. Based on the experimental result, we propose
three types of models. One of them has separatrix in its re-
action term dynamics while the others do not. We perform
one-dimensional computer simulations to study the existence
of TWS and the dependence of the wave form and velocity
on the initial nutrient concentration. Linear diffusion and
nonlinear degenerate diffusion are studied. Results of two-
dimensional simulation are also shown.

II. EXPERIMENTS AND RESULTS

In order to study sporulation rate,Bacillus bacteria were
incubated in the liquid culture medium and the number of
total cells and the ratio of spores were measured(Appendix
A). Total density of both active(vegetative) cells and spores
increased exponentially in the first 5 h(data not shown).
This result is consistent with the previous work that the cell
division of active bacteria is assumed to be a first-order re-
action; db/dt=kb. Reaction rate coefficientk is estimated
from the data of exponential growth stage. The dependence
of k on the initial nutrient concentrationN, well fits a well-
known Michaelis-Menten-type function

k =
kmaxCN

K + CN
,

where constant parameters are estimated askmax=0.6 h−1 and
K=2.2 g/L, respectively.

We investigated the relationship between sporulation and
the nutrient concentration. As sporulation is an adaptation to
bad environmental conditions such as nutrient starvation or
drying, sporulation rate has been considered as a decreasing
function of nutrient concentration[14]. However, as shown
in Fig. 1, few spores are formed under nutrient-free condition
even after 48 h incubation. Thus we suppose that bacteria
require some nutrient in order to sporulate. Biological
knowledge of sporulation process supports the hypothesis
[17]. In sporulation, DNA in a bacterial cell is replicated as
in regular cell division. Inside the parent cell, one of them is

coated with four-layered hard protein. The coated DNA is
called a “forespore.” After a forespore matures, the parent
cell releases the forespore, which is called an “endospore”
and can survive long periods of time in the bad environment.
In short, as bacteria cannot replicate their DNA under
nutrient-free condition, they cannot sporulate.

The ratio of spores to total cells was observed under the
various initial nutrient concentration(Fig. 2). Predictably,
few spores are formed at high nutrient level. The number of
spores is highest whenN=3.0 g/L. Although the ratio of
spores is not equal to sporulation rate, the result strongly
suggests that sporulation rate as a function of nutrient con-
centration has a single peak at a certain nutrient level.

Spores are observed about 23 h after the inoculation. By
this duration sporulation rate is estimated to be much smaller
than reproduction rate whose increasing time constant(dou-
bling time) is estimated 1.0–1.5 h from the analysis of the
growth curve in early stage. However, as long as the pattern
dynamics of bacterial colony is concerned, spores are defined
as inactive cells which cannot reproduce. As we could dis-
tinguish only endospores, it is presumable that time when
vegetative cells transform into forespores is much earlier
than the time of our observation[17]. So we measured the
concentration ofa-amylase in liquid culture, which is ex-
tracted by bacteria only when they sporulate into a forespore
[18]. The drastic increase ofa-amylase concentration(data
not shown) suggests that formation of forespores occurs
about 6–8 h after inoculation. The result implies that sporu-
lation rate might be as large as reproduction rate for a certain
interval of nutrient concentration. The result also implies that
sporulation and germination process’s take a long time and
that no spore returned to the vegetative phase in our experi-
ment. However, to evaluate the quantitative relationship be-
tween reproduction rate and sporulation rate, further experi-
mental analysis is necessary.

III. MODELS AND RESULTS

A. Reaction term dynamics

First, we consider a model without spatial structure,

FIG. 1. Optical micrographs ofB. circulans after 48 h incuba-
tion; (a) N=0 g/L and(b) N=4.5 g/L, respectively. Each scale bar
indicates 5mm. The arrows indicate a vegetative cell and a spore.

FIG. 2. The ratio of spores to total cells plotted vs the initial
nutrient concentration. When nutrient concentration is very small,
bacteria do not sporulate.N=3.0 g/L is best suited for sporulation.
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db

dt
= asndb − bsndb − gb,

dn

dt
= asndb, s1d

ds

dt
= bsndb,

where b,n, and s represent the density of active bacteria
(vegetative cells), nutrient concentration, and the density of
spores, respectively.asnd, bsnd, andg correspond to repro-
duction rate, sporulation rate, and death rate, respectively.
For simplicity, we assume that these rates do no depend on
bacteria density. As for reproduction rate, Michaelis-Menten-
type equation,

asnd = ca

n

n + 1
,

is known to be appropriate for various bacteria species. The
natural death of the bacteria is not commonly observed.
However, as spores are the special dormant state of bacteria,
it is reasonable to assume that active bacteria cannot survive
starvation. For simplicity, we assume the constant death rate
of active bacteria,g which is set to very low values com-
pared to sporulation rate. The unit of bacteria concentration
is rescaled so that nutrient conversion factor is 1. Our experi-
ment suggests that sporulation rate is zero atn=0,` and
takes the maximum value at a certain nutrient concentration.
Due to experimental difficulty, the quantitative relationship
between sporulation rate and reproduction rate is unclear.
Therefore, a large degree of freedom exists to determine the
actual form ofbsnd. Qualitatively, there are three possible
relationshipssFig. 3d: sad sporulation is always slower than
reproduction,sbd sporulation is faster than reproduction only
when nutrient is poor, andscd sporulation is faster than re-
production only for a certain interval of nutrient concentra-
tion.

In order to investigate the global behavior of these three
models, we perform phase plane analysis. Vector field on
sb,nd space is qualitatively determined, regardless of actual
function form (Fig. 4). In models 1 and 2, it is obvious that
the infinitesimal perturbation of the initial state only affects
the terminal state infinitesimally. On the other hand, numeri-
cal calculation suggests that separatrix exists in model 3.
When the initial nutrient concentration is lower than a criti-
cal value, all bacteria sporulate or die before nutrient is ex-

hausted. When the initial nutrient concentration is higher
than the critical value, almost all nutrient is consumed before
active bacteria disappear. We present the mathematical proof
of the existence of the critical value in Appendix B.

We focus on the separatrix of model 3. It is natural to
question whether the separatrix still exists when spatial dif-
fusion is introduced. Furthermore, such a model may repro-
duce the observed sharp change of traveling wave velocity.
The two-dimensional spatial pattern is also of great interest.
These motivated us to construct a model with spatial struc-
ture based on model 3.

B. Linear diffusion model

First, we introduce linear diffusion

] b

] t
= D¹2b + asndb − bsnd,

s2d
] n

] t
= ¹2n − asndb,

whereD represents diffusion coefficient of active bacteria.
Some experimental knowledge is neglected for simplicity,
such as nutrient chemotaxis or the dependence of bacterial
activity on local nutrient concentration. Due to the simplifi-
cation, D is constant and the model becomes easy to deal
with. Under appropriate rescaling of time and space, diffu-
sion coefficient of nutrient can be chosen as one without loss
of generality. The density of sporess is dependent variable
and is not analyzed here. We assume the sporulation rate to
be a normal function:

asnd = ca

n

n + 1
,

s3d
bsnd = cb exph− ssn − nbd2 + gj.

For the sake of simple notification, death rate is included in
bsnd. Constant parameterssca ,cb ,nb ,gd are chosen so that a

FIG. 3. Three possible models for the qualitative relationship of
reproduction rate(dotted) and sporulation rate(solid).

FIG. 4. The phase plane analysis of the models(see text). Dot-
ted lines represent isoclines.(a) Models 1 and 2 have only one
isocline and their vector fields are qualitatively the same.(b) Model
3 has three isoclines. Numerical calculation suggests the existence
of separatrix around the critical initial valuenp. Two orbits starting
from the initial values which are lower and higher than the critical
value are shown.
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model corresponds to model 3 in the preceding section.
In all numerical calculations, we putsca ,cb ,nb ,gd
=s0.3,0.1,0.3,0.01d.Crank-Nicholson scheme is applied to
calculate diffusion term with zero flux boundary condition.
Initially, nutrient is uniformly distributed at a levelN and the
small amount of active bacteria are put at the origin while no
spore is present.

As a result of numerical simulation of the model in one-
dimensional space, traveling wave is formed for most initial
conditions. However, we found interesting behavior for a
certain small parameter region(Fig. 5). WhenN is smaller
than the critical valueNp, a bacterial wave has a single peak
[Fig. 5(a)]. WhenN is larger thanNp, a new wave appears
behind the original wave[Fig. 5(b)]. A wave in the back
propagates initially slower, but when the distance between
two waves reaches a certain value, a wave in the back begins
to propagate at the same velocity as the fore wave. In other

words, a wave becomes twofold[Fig. 5(c)]. Moreover, at the
same critical valueNp, nutrient concentration left behind the
wave sharply changes(from 0.24 to 0.0026). This critical
initial value Np is estimated as 0.485,Np,0.49. The result
suggests that according to the initial condition this system
have two phases, a singlefold traveling wave leaving some
amount of nutrient behind and a twofold traveling wave leav-
ing little nutrient behind. We conclude that the separatrix in
reaction term dynamics is maintained against introduction of
linear diffusion.

Surprisingly, however, propagating velocity does not
show sharp change(Fig. 6). To guess the velocity analyti-
cally, we derive the linear spreading velocity ofb in the
linearized equation about the unstable statesb,nd=s0,Nd
[19],

] b

] t
= D¹2b + Sb,

] n

] t
= ¹2n − asNdb, s4d

S= asNd − bsNd,

in which the first equation is the linearized Fisher-
Kolmogoroff equation whose linear spreading velocityc is

c = ÎSD, s5d

when the initial condition has a compact support. The nu-
merical calculation shows that the velocity of TWS in the
nonlinear modelfEq. s2dg is equal to the linear spreading
velocity sFig. 6d. This means that the wave has a “pulled
front” in the sense that the global nonlinear dynamics of the
traveling wave is governed by the dynamics around the lead-
ing edge where the linearized system is a good approxima-
tion f19g. This might be the reason why the velocity is a
continuous function of the initial nutrient concentration de-
spite the existence of the separatrix in reaction term dynam-
ics.

FIG. 5. Results of the numerical calculation of linear diffusion
model sD=1d. The spatiotemporal patterns of bacteria(upper row)
and nutrient(lower row) are shown. Horizontal and vertical axes
correspond to spatial position and time, respectively. Brightness
represents density(concentration) of bacteria(nutrient), scales of
which are kept constant.(a) N=0.485, (b) N=0.490, and(c) N
=0.495.

FIG. 6. Velocity of traveling wave(circle), velocity of that in the
linearized system(bold line), and nutrient concentration left behind
the wave(triangle) are shown against the initial nutrient concentra-
tion. The phase transition of the wave form occurs at the critical
initial nutrient concentration while the wave velocity changes con-
tinuously and smoothly,D=1.

FIG. 7. Results of numerical calculation of nonlinear diffusion
model sD=1d. Scales are different for eachN. (a) N=0.64, (b) N
=0.65, and(c) N=0.95.
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C. Nonlinear diffusion model

Nonlinear diffusion coefficient has been first applied to
bacterial colony pattern problem by Kawasakiet al. [10].
Biologically, such diffusion is considered as a result of co-
operative cell motion. There are several evidences of cell-
cell signal exchange and it is natural to consider that bacte-
rial diffusion is not simple linear diffusion of bacteria.
Mathematically, the following Fisher-Kolmogoroff equation
with nonlinear diffusion is well studied:

] u

] t
= = „Dsud = u… + us1 − ud. s6d

When Dsud=u, a complete analysis has been carried out
f20–22g while more general problems are also intensively
studiedf15,23–25g. Whenu=0, the diffusion term vanishes
and the equation degenerates into an ordinary differential
equation. So this type of equation is often referred to as
nonlinear degenerate parabolic equation. In relation to singu-
larity of u=0, a characteristic solution is known in this sys-
tem. The TWSusx,td=Usx−ctd=Uszd satisfying

Us− `d = 1, Uszd = 0 ∀ zù zp, U8szpd Þ 0, zp , + `

is called as the TWS of sharp type. In this solution,u=0 in
front of the wave frontszùzpd while u.0 behind the front
sz,zpd. In the linear diffusion equation, on the other hand,u
only approaches zero asz→`. The TWS of sharp type is
known to exist in models with various reaction terms and
nonlinear degenerate diffusion term.

We focus on the property of the sharp wave front. The
preceding discussion of linear conjecture of wave velocity
does not hold in such TWS. Therefore, the wave velocity as
a function of the initial nutrient concentration may change
sharply as the wave form does. In order to keep the model as
simple as possible, we introduce nonlinear diffusion coeffi-
cient of bacteria, which is a function of only bacteria density.
We will study the following equations:

] b

] t
= D = sb = bd + asndb − bsnd,

s7d
] n

] t
= ¹2n − asndb,

and perform numerical calculation of the model in one-
dimensional space. We will use the sameasnd andbsnd [Eq.
(3)].

As a result of computer simulation, traveling wave is al-
ways formed(Fig. 7). The separatrix of the wave form re-
mains. Nutrient concentration left behind the wave front
sharply changes at the critical valueN1

p.0.64. However, a
wave form remains single wave untilN exceeds another criti-
cal valueN2

p.0.93. Above the critical value, a wave form
becomes twofold. As is discussed, we are interested in the
asymptotic behavior of the wave front. Global wave form
and the detail of the wave front of typical twofold waves in
linear and nonlinear diffusion models are shown in Fig. 8.
The wave front of the linear diffusion model is smooth while
that of the nonlinear diffusion model is sharp, convex, and

intersectsb=0 line. It is confirmed that all TWSs in the
linear diffusion model are of smooth type and that all TWSs
in the nonlinear diffusion model are of sharp type. As is
expected from these facts, wave velocity showed sharp
change at both initial conditions where wave form sharply
changes[Fig. 9(a)]. Notice the remarkable similarity be-
tween this and the experimental result of the colony growth
velocity of Paenibacillus dendritiformisbacteria[Fig. 9(b)],
although in the experiment the growth velocity of compli-
cated two-dimensional pattern was measured. Another inter-
esting point is that two types of phase transition, which occur
at the same time in the linear diffusion model, occur inde-
pendently. At the present state, however, we have no analyti-
cal explanation why two different critical values appear.

D. Two-dimensional simulation

In order to study the effect of the phase transition of wave
form and velocity in a two-dimensional version of the model,
we performed numerical calculation. Preliminary simulation
showed that the linear diffusion model[Eqs. (2) and (3)]
does not show any structured pattern other than simple dis-
klike pattern. So we focus on the nonlinear diffusion model
[Eqs.(3) and (7)]. The density of sporess is calculated as

ds

dt
= cb exph− ssn − nbd2j. s8d

Owing to limited computer time, calculation was done in the
positive quadrant divided into 200032000square lattices.

FIG. 8. Wave form of bacteria density in the(a) linear and(b)
nonlinear diffusion modelssD=1d. Enlarged figures show that the
front is smooth in the linear diffusion model and sharp in the non-
linear diffusion model.(a) N=0.495 and(b) N=0.95.
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The response of the pattern to the initial nutrient concen-
tration N is studied(Fig. 10). As a result, four typical pat-
terns are obtained; namely, fine branching, ring, branching,
and dense finger. WhenN is very low, fine branching pattern
is observed. This pattern is also similar to dense-branching
morphology (DBM) pattern. In experiments, both fine
branching and DBM are observed when the initial nutrient is
low, which is consistent with the present numerical result
[3,26].

When N exceeds the first critical valueN1
p.0.66, the

whole pattern changes very sharply. Nutrient concentration
left behind changes from 0.35 to 0.002 and the pattern itself
also changes to ring pattern. The corresponding transition in
one-dimensional simulation has been already described in
the preceding section. The result means that the separatrix
originating from the reaction term still remains in two-
dimensional model with nonlinear diffusion. In the ring pat-
tern, no spore is left behind the bacterial front. There is no
experimental observation which supports this. However, the
phase transition of two-dimensional pattern is mathemati-
cally interesting.

When N exceeds the second critical valueN2
p.0.78, the

pattern changes into branching pattern. This change is also
very sharp, suggesting that it is another separatrix. It seems
that there are two independent traveling waves of bacteria.
Only forward wave produces branching pattern and back

FIG. 9. (a) Velocity of traveling wave(circle) and nutrient con-
centration left behind the wave(triangle) are shown against the
initial nutrient concentration. The phase transition of both the wave
form and the velocity occurs,D=1. (b) Experimentally observed
colony growth velocity. Reprinted from Ref.[3], Copyright(2004),
with permission from Elsevier.

FIG. 10. Results of two-dimensional simulation of nonlinear
diffusion modelsD=1d. Spatial distribution ofb+s is shown. The
brightness ofb is expressed five times stronger than that ofs. Ex-
ceptN=0.7, a branching pattern is formed. A small amount of nu-
trient is left behind the front whenN=0.65.
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wave, propagating at slower speed, contributes little to the
global pattern.

WhenN exceeds the third critical valueN3
p.0.89, the two

bacterial waves are combined to form the twofold wave,
while the global pattern does not change very much. En-
larged pattern is shown in Fig. 11. Singlefold and twofold
waves are mixed along the front line. Twofold wave in bac-
terial pattern corresponds to the tip of the growing branch in
spore pattern. Twofold wave consists of a fore wave corre-
sponding to the first positive region of net bacterial repro-
duction rate where nutrient is highsn.n3d and a back wave
corresponding to the second region where nutrient is low
sn1,n,n2d [Fig. 4(b)]. Spores are produced in the region
n2,n,n3 while bacteria simply die out in the regionn,n1.
Therefore, most spores are left behind the fore wave, which
only the twofold wave has.

When N is increased further, the pattern gradually
changes into dense fingering. In experiments, dense fingering
pattern is observed when the initial nutrient is high, too. In
our model, the change is caused by increase in twofold wave
region in the front line.

There is no unique method to measure the growth velocity
of such complex patterns. When we roughly estimate the
velocity as a function of the initial nutrient, it is similar to the
result of one-dimensional model. The velocity is very slow
when N,N1

p, almost the same whenN1,N,N2
p, and then

increases rapidly whenN.N3
p.

Generally, in branching pattern formation, active spot ex-
ists only at the tip of growing branch. The possible mecha-
nism for such spatiotemporal pattern formation is as follows.
First, simple disklike pattern(radial traveling wave solution)
becomes unstable due to some nonlinearity in the model.
Such interface instability has been well studied, e.g.,
Mullins-Sekerka dispersion relation in crystal growth theory.
In the particular field of bacterial colony growth, the inter-
face instability of a simple nonlinear model is intensively
studied[16,27]. Dispersion relation, however, only provides
the most unstable wave number and its stability. In order to
form clear pattern, active spot should be independent distinct

aggregate. It has been unclear why wave front evolves to
active and inactive parts which are so clearly distinguishable.

Based on the existence of separatrix, we here propose a
hypothesis why clear patterns are observed in our model.
From our calculation on the one-dimensional space, it is
naturally expected that the model potentially has two types
of stable states, i.e., a singlefold TWS and a twofold TWS.
The initial condition determines which is realized. Transition
between these states is discontinuous, i.e., separatrix. When
the model is extended to the two-dimensional version, global
TWS may become unstable under some condition. In such
case, spatial heterogeneity may evolve into the mixture of
singlefold and twofold waves, both of which are locally
stable in so small region that the system is approximately
equal to the one-dimensional model in radial direction. The
length of the region along the front line might be determined
by dispersion relation analysis. Separatrix originating from
the reaction term produces two distinct areas in the wave
front, which moves outward to draw clear branching pattern.

IV. CONCLUSION

We performed an experiment to determine the sporulation
rate as a function of the nutrient concentration. Based on the
result, a reaction diffusion model of bacterial colony growth
is proposed. Especially, we focus on separatrix in reaction
term dynamics. We study the effect of separatrix on traveling
wave solution to find a different behavior; transition between
a singlefold and a twofold wave. The phase transition of the
velocity of the traveling wave shows great similarity with the
previous experiment. Results of a two-dimensional simula-
tion of our model are generally consistent with the observed
patterns.

In our model withN.N2
p, the spatial pattern of spores

shows clear branching while that of bacteria does not. This
seems inconsistent with the observed patterns, which should
be studied in future. The effect of the diffusion coefficient of
nutrient, the elimination of the effect of square lattice in
numerical calculation, and the mathematical proof or the ex-
planation of separatrix in reaction diffusion equation are also
open problems.

As we mentioned at the beginning of the paper, the study
of bacterial colony growth is not only a special biological
topic but also it must be an attempt to explore universal law
of pattern formation. Good theoretical study suggests new
biological experiments while a new biological result inspires
new models. Although bacteria are one of the simplest form
of life, they produce so complex patterns. We hope the
present study contribute to our comprehension of self-
organized pattern formation.

APPENDIX A: EXPERIMENTAL METHOD

There are someBacillus species each of which produces
the original colony patterns. We usedBacillus circulans(B.
circulans) as a spore forming species, but the qualitative fea-
tures of sporulation learned in one species can be applied to
another.B. circulanswas incubated in the liquid culture me-
dium which was prepared by the following methods[28].

FIG. 11. Enlarged figure of two-dimensional branching pattern
whenN=0.9.
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10 g/L sodium chloride and nutrients with various concen-
tration were dissolved in distilled water. We used Bacto
Tryptone Peptone(TP) and Bacto Yeast Extract(YE) as nu-
trients, which contain vitamin, amino acid, minerals, and car-
bon sources. They were purchased from Difco, Detroit, M1,
USA. The weight ratio was kept TP/YE=2 and the initial
total concentrationN was varied from 0 g/L to 15 g/L. This
solution was autoclaved for 15 min at 120°C and 2 atm and
then cooled down to room temperature. Bacteria, which had
been stored at −20°C to prevent them from mutation, were
preincubated in this liquid culture withN=15 g/L. After
15–18 h preincubation, bacteria density became about 108

−109 number/mL while no spore was formed. The bacteria
density was adjusted to about 107 number/mL and then con-
stant quantity of the solution was incubated in a plastic tube
filled with fresh liquid culture. The tube was let in the bath
incubator whose temperature was controlled at 37°C and
shaken during incubation. We adopted batch-type incubation,
in which fresh nutrient was not fed during incubation.

We took 5mL of test portion from each liquid culture
after 30 h incubation. The total bacteria number in each test
portion was counted by using Thoma blood cell counter and
an optical microscopes3400d and then the bacteria density
was calculated. The ratio of spores to total cells was ana-
lyzed by the following method. Bacteria in every test portion
were stained by Möller’s spore staining method for the easy
optical microscopic observation. Optical micrographs
s31000d of every sample were taken by a digital camera. In
the micrographs, spores and vegetative cells are easily dis-
tinguishable. The ratio of spores were calculated by imaging
software.

APPENDIX B: EXISTENCE OF SEPARATRIX

We consider a dynamical system

db

dt
= asndb − bsndb,

sB1d
dn

dt
= − asndb,

defined in the positive quadrantR+
2=hsb,nd :bù0,nù0j. We

assumeas0d=0 which guarantees any orbit remains inR+
2.

The set of equilibrium points of Eq.(B1) is n axissb=0d. We
assume continuous functionsasnd andbsnd satisfy

0 , asnd , A ∀ n . 0, sB2d

0 , b1 , bsnd , b2, sB3d

and thusn is monotonically decreasing function oft. There-
fore, chaos or limit cycle never occurs. Apparently,n cannot
diverge so we focus on whetherb diverges or not. As long as
b.0, n decreases. Whenn=0, db/dt,−b1b holds, which
meansb converges to zero. Therefore, all orbits converge to
the equilibrium points onn axis.

Eigenvalues of linear analysis around an equilibrium
point s0,nd on n axis are

l = 0,S sB4d

and

S; asnd − bsnd, sB5d

with eigenvectors

S0

1
D and S S

− asnd
D ,

respectively. The zero eigenvalue means that the equilibrium
points are neutrally stable against perturbation in an axis
direction, which is trivial because wholen axis is equilib-
rium. The sign ofS determines whether an equilibrium is a
repeller or an attractor.

Here we assume the qualitative relationship betweenasnd
andbsnd is the same as in model 3 in text. According to the
stability, n axis is divided into four subsets; stable line seg-
ment S1s0,n,n1d, unstable line segmentU1sn1,n,n2d,
stable line segmentS2sn2,n,n3d, and unstable half line
U2sn3,nd [Fig. 4(b)]. As n is monotonically decreasing, any
orbit starting fromU1 must enterS1. Let fspd as a terminal
point of an orbit starting from a pointp. According to fspd,
U2 consists of the following two subsets:

U21 ; hp P U2:fspd P S1j, sB6d

U22 ; hp P U2:fspd P S2j. sB7d

As we proved, any orbit converges to the equilibrium and

U2 = U21 ø U22, sB8d

U21 ù U22 = f, sB9d

hold. Hereafter, we prove the following theorem.
Theorem 1. (existence of separatrix).There exists unique

Np.n3 such that

U21 $ hs0,nd P U2:n . Npj,

U22 $ hs0,nd P U2:n3 , n , Npj.

Proof. It is geometrically apparent that bothU21 andU22 are
connected because phase plane is two dimensional and
any two orbits never intersect each other. Apparently,U21
must be aboveU22 on n axis; otherwise there should be
intersecting orbits. The theorem is proved ifU21
Þf andU22Þf are proved.
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Inclination of an orbit

db

dn
=

asnd − bsnd
asnd

is bounded forn.n2 becausea and b are bounded and
becausea.0 for n.n2. Thus,b can change infinitesimally
with infinitesimal change ofn. Moreover,db/dnÞ0 for n
Þn3. This means thatufspd−p3u,Osed if up−p3u,e, where

p3;s0,n3d. In other words, an orbit starting from a point
infinitesimally abovep3 must enter a point infinitesimally
below p3, which is an element ofS2. Thus,U22Þf.

When p→ s0,`d, the orbit starting fromp intersectsn
=n3 line at s` ,n3d as db/dn.0 for n.n3. However, de-
crease inb is finite in finite intervalfn2,n3g as inclination of
the orbit is finite. Thus, the orbit starting from a point with
very largen must enterS1, which meansU21Þf.h
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