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Abstract

Social learning is an important ability seen in a wide range of animals including humans. It has been argued that individual

learning, social learning, and innate determination of behavior are favored by natural selection when environmental changes occur

at short, intermediate, and long intervals, respectively. Only recently, however, has the hypothesis been examined by means of

mathematical models. In this paper, we construct a simple model in which each organism uses one of three genetically determined

strategies — it is an individual learner, a social learner or an ‘‘innate’’ — and the three types of organisms are in direct competition

with each other. A reduced model, involving only the individual learners and innates, is effectively linear, and we show that by

solving the eigenvalue problem of this reduced system we arrive at a good approximation to the global dynamics of the full model.

We also study the effect of stochastic environmental changes and reversible mutations among the three strategies. Our results are

consistent with the predictions of previous studies. In addition, we identify a critical level of environmental constancy below which

only individual and social learners are present.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The behavior of a biological organism is a complex
process involving the expression of relevant information
possessed by that organism. For example, as we write
these words, we are presumably accessing learned
knowledge stored in our brains that we believe applies
to the problem we hope to solve. At the risk of
oversimplification (Gould and Marler, 1987), it is
possible to classify behaviors by the three distinct ways
in which this information can be obtained (Cavalli-
Sforza and Feldman, 1983a; Boyd and Richerson, 1985;
Laland et al., 2000; Henrich and McElreath, 2003;
Alvard, 2003). This trichotomous classification labels
behavior as being either ‘‘innate,’’ ‘‘socially learned,’’ or
‘‘individually learned’’.
e front matter r 2004 Elsevier Inc. All rights reserved.
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A behavior is innate when it entails the direct
expression of information encoded in the genes, which
are inherited from the parents via the germ cells. Social
learning entails the transfer of information between
socially interacting individuals, as a result of which the
behavior exhibited by a ‘‘model’’ is adopted by an
‘‘observer’’ (Galef, 1988; Whiten and Ham, 1992; Heyes,
1993). This rubric covers teaching, imitation (goal-
directed copying of an action pattern), local enhance-
ment (attention drawn to a particular object by the
behavior of another, leading to independent discovery of
that behavior), and various other psychological pro-
cesses. Finally, individual learning refers to learning that
occurs independently of any social influences. Examples
are trial-and-error and insight.

Social learning is of special interest to anthropologists
because it is the process that supports cultural inheri-
tance (Cavalli-Sforza and Feldman, 1981; Durham,
1991). As noted above, social learning is a generic term
describing many different processes, and it is exhibited
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by a wide variety of animals. Although much attention
has been paid to social learning in humans, we consider
here the evolution of social learning in general.

The utility of social learning (and cultural inheritance)
was first studied quantitatively by Cavalli-Sforza and
Feldman (1983a,b) and Boyd and Richerson (1985) (see
also Feldman and Cavalli-Sforza, 1976). The key point
is that social learners are equally receptive to both
adaptive and maladaptive behaviors. The fitness of
social learners depends on the individuals from whom
they acquire information, and this complicates the
evolutionary dynamics of social learning (Cavalli-Sforza
and Feldman, 1983a,b; Aoki and Feldman, 1987, 1989;
Aoki, 1990; Takahasi and Aoki, 1995).

Rogers (1988) proposed a simple model of competi-
tion between individual and social learners in a
temporally variable environment. In this model, the
environment may change between generations. There is
an optimal behavior appropriate to each environmental
state. Individual learners achieve this optimal behavior
on their own, but suffer a fitness cost due to errors made
in learning. Social learners ‘‘copy’’ an organism of the
parental generation chosen at random (oblique trans-
mission, Cavalli-Sforza and Feldman, 1981), at a direct
cost that is smaller, but run the risk of copying an
inappropriate behavior. Since only the individual
learners are able to accurately track the changing
environment — the social learners are parasitic on the
individual learners — this risk increases as the frequency
of individual learners decreases (or equivalently the
frequency of social learners increases). Hence, we
intuitively expect that the fitnesses of individual and
social learners may be equal at some intermediate
frequency, and that this should define a polymorphic
equilibrium. Feldman et al. (1996) rigorously reformu-
late the Rogers (1988) model for both periodically and
randomly changing environments. Their analysis con-
firms the prediction (Rogers 1988) that social learners
will be eliminated if the environment changes too often.
Social learners can be maintained in the population if
the environment is sufficiently constant, and at higher
frequency the greater is this stability.

Most previous studies have compared only two
strategies. Recently, we extended the model of Feldman
et al. (1996) to propose a new model in which all three
strategies (innates, social learners and individual lear-
ners) compete at the same time (Aoki et al., submitted).
Numerical analysis of this model confirms the consensus
view that individual learning, social learning (from the
parental generation), and innate determination of
behavior are favored by natural selection when the
interval, measured in generations, between environmen-
tal changes is short, intermediate and long, respectively.
Moreover, we showed that there is a critical frequency
of environmental change. When the environment
changes at a frequency higher than this critical level,
the individual and social learners coexist while the
innates go extinct. When this frequency is lower than the
critical level, innates dominate while both individual and
social learners are eliminated. These transitions seen in
the numerical analysis are very sharp.

In this paper, we investigate further the model of Aoki
et al. (submitted). First, we argue that the behavior of
this model can, to a good level of approximation, be
described in terms of the eigenvalue problem of the
reduced evolutionary dynamics in which social learners
are neglected. This assumption permits us to obtain an
analytic expression for the critical frequency of environ-
mental change under both periodically changing and
stochastically changing environments. Second, we ex-
tend the model to incorporate random reversible
mutations among the three strategies and show that
the qualitative results remain similar in the extended
model, but that there are also some interesting
differences.
2. Models and results

2.1. The basic model

Assume a population of haploid asexual organisms. A
tri-allelic ‘‘strategy’’ locus determines whether an
organism is an innate, a social learner, or an individual
learner (abbreviated as G, SL and IL, respectively). A
social learner copies a random member of the parental
generation. Its behavior will be adaptive or maladaptive
depending on whether or not the information obtained
is appropriate to the current environmental state. An
individual learner collects information directly from the
environment and its behavior is always adaptive. The
behavior of an innate is determined by the allele it
carries at the ‘‘innate information’’ locus and is adaptive
only if this allele ‘‘matches’’ the present environmental
state. The innate information locus is not expressed in
individual and social learners. Note that there may be a
variety of adaptive behaviors, which by assumption are
equally adaptive (i.e. have the same fitness), and
similarly for maladaptive behaviors.

We posit a model of mutation and variation at the
innate information locus involving two classes of alleles.
The ‘‘resident’’ alleles produce behavior that is adaptive
in the current environment state, whereas the ‘‘mutant’’
alleles produce maladaptive behavior. Each of the two
classes of alleles comprises many selectively neutral
variants. A small subset amounting to a fraction r of
each class possesses the special property of being
adaptive when the environment changes. These variants
can be regarded as ‘‘preadapted’’ alleles awaiting
environmental change.

Our basic premise with regard to the environment is
that when it changes it never reverts to an earlier state
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(infinite environmental state model, Feldman et al.,
1996). Rogers (1988) assumed that the environment flips
back and forth between two states. Comparative
analysis of the two environmental state and the infinite
environmental state models yielded qualitatively similar
results (Feldman et al., 1996). The real world likely
comprises a finite but large number of possible states
among which transitions can occur. If the environment
includes other evolving species, it is a reasonable
assumption that the probability of any particular state
recurring will be small. The infinite environmental state
model is an idealization of this situation, which we
introduce for the mathematical simplification it
achieves.

In the infinite state model, none of the preexisting
behaviors can be adaptive after an environmental
change. Innate behavior in our model is the result of
an interaction between the allele carried by an organism
and the environment. Hence, the behavior of an innate
carrying a preadapted allele may differ in the pre- and
post-change generations, and consistent with our basic
premise, we assume that the behavior in the pre-change
generation is maladaptive in the post-change generation.
In particular, this implies that a social learner cannot
acquire correct behavior by copying an innate with a
preadapted allele when the environment changes.

By assumption, individual learners always behave
appropriately for the given environmental state, but
social learners and innates can get it either right or
wrong. Hence, our model distinguishes five phenogen-
otypes (genotype–phenotype combinations, Feldman
and Cavalli-Sforza, 1984), which we abbreviate: GC
(genetic correct, i.e., innate with resident allele), GW
(genetic wrong, i.e., innate with mutant allele), SLC
(social learner correct), SLW (social learner wrong), and
IL (individual learner). The five phenogenotypes, their
frequencies among reproductive adults, and their
fitnesses are summarized in Table 1. The fitnesses are
relative viabilities and are assigned to the five pheno-
genotypes in the following way. There is a baseline
fitness of 1 for adaptive behavior, and maladaptive
behavior causes the fitness to be reduced by s. Social
learners bear a direct cost of developing and maintain-
ing a nervous system supportive of learning, which is
Table 1

The five phenogenotypes, their fitnesses and frequencies among

reproductive adults

Phenogenotype Fitness Frequency

GC (genetic correct) 1 u

GW (genetic wrong) 1 � s v

SLC (social learner correct) 1 � d x

SLW (social learner wrong) 1 � s � d y

IL (individual learner) 1 � c z
translated into a fitness loss d. Individual learners suffer
a similar direct cost but in addition they are adversely
affected by mistakes made before they mature; the total
penalty for them is c.

In our basic deterministic model, we ignore mutation
at the strategy locus and assume that the environment
changes with a fixed period l. The life cycle events are
asexual reproduction, learning, and natural selection, in
this order. Then, the recursions relating the frequencies
of the five phenogenotypes in the offspring generation,
indicated by primes, to those in the parental generation
can be written as follows.

First, when the environment remains constant be-
tween generations the recursions are:

W 1u0 ¼ u

W 1v0 ¼ ð1 � sÞv;

W 1x0 ¼ ð1 � dÞðx þ yÞðu þ x þ zÞ;

W 1y0 ¼ ð1 � s � dÞðx þ yÞðv þ yÞ;

W 1z0 ¼ ð1 � cÞz: ð1Þ

Second, when the environment changes between gen-
erations they are:

W 2u0 ¼ rðu þ vÞ;

W 2v0 ¼ ð1 � sÞð1 � rÞðu þ vÞ;

W 2x0 ¼ 0;

W 2y0 ¼ ð1 � s � dÞðx þ yÞ;

W 2z0 ¼ ð1 � cÞz; ð2Þ

where we used the assumption that the constant fraction
r of all alleles at the information locus produces
adaptive behavior in the post-change generation. In
both recursions, W i is a normalization factor for the
frequencies. The environment changes every l genera-
tions, so one set of iterations entails l � 1 applications of
(1) followed by one application of (2).

2.2. The reduced model and analysis

Aoki et al. (submitted) studied the basic model
numerically when docos: They found that the fre-
quencies of the five phenogenotypes converge to a
periodic solution with period l: Moreover, they showed
that the solution as a function of l shows a sharp
transition at a critical value of l; which we denote l�: In
other words, the global behavior of the basic model is
classified into two modes. When l4l�; they found that
G dominates; on the other hand when lpl�; G die out
and SL and IL coexist. The transition between the two
modes is very sudden and discrete. These results were
obtained numerically. In this section we explore the
analytic framework and derivation of l�:

The social learners are parasitic on the individual
learners because only individual learners are able to
accurately track the changing environment. Hence, if a
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population of innates is stable against invasion by
individual learners, it should be able to resist invasion by
a mixture of individual and social learners. Therefore,
consider the competition between innates and individual
learners. Let transformation f be

u0

v0

z0

0
B@

1
CA ¼

1 0 0

0 1 � s 0

0 0 1 � c

0
B@

1
CA

u

v

z

0
B@

1
CA:

As u, v and z are frequencies, a normalization
operator Z follows f: The state after t generations is
therefore given by

ut

vt

zt

0
B@

1
CA ¼ Z � fð Þ

t

u0

v0

z0

0
B@

1
CA:

Environmental changes occur every l generations. Using
the matrix

E ¼

r r 0

1 � r 1 � r 0

0 0 1

0
B@

1
CA;

the state after nl generations becomes

unl

vnl

znl

0
B@

1
CA ¼ Z � fEð Þ Z � fð Þ

l�1
� �n u0

v0

z0

0
B@

1
CA: ð3Þ

In this equation, normalization applies every genera-
tion. However, as f is linear, one normalization suffices
(see Appendix A). Hence,

unl

vnl

znl

0
B@

1
CA ¼ ZfEð ÞZfl�1

� �n u0

v0

z0

0
B@

1
CA ¼ ZfZEfl�1

� �n u0

v0

z0

0
B@

1
CA;

where the latter equality holds since E and Z commute,
i.e. EZ ¼ ZE: As f has an inverse matrix and ZfZ ¼

ðZfÞ2f�1
¼ Zf2f�1

¼ Zf; we obtain

unl

vnl

znl

0
B@

1
CA ¼ ZfEfl�1

� �n u0

v0

z0

0
B@

1
CA ¼ Z fEfl�1

� �n u0

v0

z0

0
B@

1
CA ð4Þ

because fEfl�1 is linear. Although Z is not linear, the
global behavior of the system is completely determined
by the linear transformation Efl :

u0 ¼ rðu þ ð1 � sÞlvÞ;

v0 ¼ ð1 � rÞðu þ ð1 � sÞlvÞ;

z0 ¼ ð1 � cÞlz:

For simpler notation, we define

A ¼ ð1 � sÞl ;

C ¼ ð1 � cÞl :
The transformation Efl can then be written as

u0

v0

z0

0
B@

1
CA ¼

r rA 0

1 � r ð1 � rÞA 0

0 0 C

0
B@

1
CA

u

v

z

0
B@

1
CA

and the eigenvalues

l1 ¼ rþ ð1 � rÞA;

l2 ¼ 0;

l3 ¼ C

are all real and non-negative. The corresponding
eigenvectors are

r

1 � r

0

0
B@

1
CA;

A

�1

0

0
B@

1
CA;

0

0

1

0
B@

1
CA;

respectively.
As n ! 1; the system is dominated by the eigenvec-

tor associated with the eigenvalue having the largest
absolute value. With continuing iteration of Efl the
system asymptotically approaches either

k1l
n
1

r

1 � r

0

0
B@

1
CA or k2Cn

0

0

1

0
B@

1
CA

where k1 and k2 are constants depending on the initial
state. It is clear that when we include normalization (i.e.,
Eq. (4) the system also approaches either of these two
modes. In the first mode (l14l3), the state P1,

u

v

z

0
B@

1
CA ¼

r

1 � r

0

0
B@

1
CA

is the unique globally stable equilibrium. Convergence
to P1 means that innates outcompete individual
learners. The frequency of GC is small (r) at P1 because
P1 is the state just after the environment changes. In the
second mode (l1ol3), the state P2,

u

v

z

0
B@

1
CA ¼

0

0

1

0
B@

1
CA

is the unique globally stable equilibrium. Convergence
to P2 means that individual learners outcompete
innates.

The transition between the two modes occurs at l ¼

l�; which is determined by l1 ¼ l3 or

rþ ð1 � rÞA ¼ C: ð5Þ

Solving (5) for l gives the analytic expression of l�: As
l ! 1; A ! 0 and C ! 0: Thus, for sufficiently large l,
l14l3 and P1 is globally stable. Assume s4c � r; then
l1ol3 when l ¼ 1: Both eigenvalues are monotonically
decreasing functions of l, and l1 converges to r faster
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Fig. 2. Frequencies of individual learning, social learning, and innate

behavior, averaged over one period at equilibrium, are plotted against

the period length (l) on a log scale for the periodic environmental

change model. The curves are labeled by the frequencies: z for

individual learners, x þ y for social learners, and u þ v for the innates.

Parameters are s ¼ 0:1; c ¼ 0:02 and r ¼ 10�6:

Table 2

Comparison of numerical and analytical results

Parameters Results

s c d r l� l� analytic

0.1 0.02 0.01 10�6 683 683

0.1 683 683

0.05 269 269

0.08 165 165

0.2 683 683

10�7 797 797

l� and l� analytic are derived by the numerical iteration of (1)–(2) and

from (5), respectively. Parameters are s ¼ 0:1; c ¼ 0:02; d ¼ 0:01; r ¼

10�6 unless otherwise specified. l� analytic is monotone decreasing in
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than l3 converges to zero. This means that there exists a
unique solution of (5) in an interval ½1;1Þ (Fig. 1). In
other words, there exists a unique integer l� such that P1
is always approached when l4l� and that P2 is always
approached when lpl�:

Convergence to P1 or P2 in the reduced model implies
convergence to the periodic solution with period l in the
full model (Eqs. (1)–(2)). Here we discuss whether the
differences between the reduced and full models are
negligible or not. With regard to the first mode, stability
of P1 (fixation of G) in the reduced model shows that IL
cannot invade by itself in the full model. Intuitively, we
expect that presence of SL at a low frequency should not
facilitate invasion by IL, since SL are parasitic on IL,
but we cannot rule out this possibility. On the other
hand, it can be rigorously shown that SL cannot invade
the population of G in the full model, whether or not IL
are also present (see Appendix B).

For the second mode, stability of P2 (fixation of IL)
does not necessarily entail that IL will be fixed, as SL
may coexist with IL in the full model. Nevertheless, the
important point is that G cannot invade. In fact, the
fitness of IL is always 1 � c regardless of the frequencies
of the other phenogenotypes, and at the equilibrium
periodic solution the geometric mean fitness of SL
should equal 1 � c: (This condition determines the
equilibrium ratio of SLC to SLW.) Hence, it will be
equally difficult for G to invade a polymorphism of IL
and SL as for it to invade a monomorphism of IL. When
P2 is stable, the geometric mean fitness of G is less than
1 � c; whence G cannot invade.

In conclusion, in the full model we expect the innates
to dominate in the first mode (l4l�) and to go extinct in
the second mode (lpl�). With Aoki et al.’s parameters
(s ¼ 0:1; c ¼ 0:02 and r ¼ 10�6), (5) gives l� ¼ 683;
which is exactly the same as in the numerical result
(Fig. 2). A comparison between the numerical results of
Fig. 1. Eigenvalues as a function of period. Parameters are s ¼ 0:1;
c ¼ 0:02 and r ¼ 10�6:

the parameters r and c, monotone increasing in the parameter s

(proofs not shown), and independent of the parameter d. Rows 1 and 5

of the table predict the same apparent value of l� analytic although s

has been varied, because ð1 � sÞl
�

5ð1 � cÞl
�

holds for the given

parameters.
the full model and the analytical results of the reduced
model is summarized in Table 2. Our analysis gives the
exact l* value in all cases tested.
2.3. A stochastic model and analysis

Aoki et al. (submitted) also dealt with the case where
environments change with probability p at each genera-
tion. In this case also, they observed two modes,
although the transition was continuous. Here we try to
clarify whether a threshold p* exists and to derive it
analytically.
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Fig. 3. Average frequencies of individual learning, social learning, and

innate behavior in the stochastic environmental change model. The

values at the initial 50,000 generations are discarded to eliminate the

effect of the initial values and the average of the subsequent 50,000

generations are used. This process is repeated for 100 different random

number seeds and the average result is plotted. The horizontal axis, 1/

p, is a mean interval of environmental changes. The curves are labeled

by the frequencies: z for individual learners, x þ y for social learners,

and u þ v for the innates. Parameters are s ¼ 0:1; c ¼ 0:02 and r ¼

10�6:
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We study the reduced stochastic model in which the
transformation with stasis is Zf while the transforma-
tion with change is ZEf: Let us consider the asymptotic
behavior of the ratio of the frequency of individual
learners relative to the frequency of innates, i.e. z=ðu þ

vÞ: In the deterministic model, if the environment does
not change for l � 1 generations and then changes (l
generations in total), this ratio changes by the factor of

gðlÞ ¼
C

rþ ð1 � rÞA
:

This is because the component in the second eigenvector
corresponding to the eigenvalue l2(¼ 0) disappears.
Fortunately, the first and third eigenvectors do not
depend on the period, and the IL/G ratio is also
multiplied by gðlÞ in the stochastic model.

The probability that the interval between an environ-
mental change and the next one is l is

PðlÞ ¼ ð1 � pÞl�1p:

After sufficiently many generations, we expect that
the initial IL/G ratio is multiplied by

Y1
l¼1

gðlÞPðlÞ:

Therefore, if

X1
l¼1

PðlÞ ln gðlÞo0 ð6Þ

then the population of innates is stable against invasion
by individual learners (and most likely social learners).
By this analysis, we expect that there exists a threshold
p� and the system essentially has two modes. The
inequality gives an analytic estimate of p�: With Aoki et
al.’s parameters (s ¼ 0:1; c ¼ 0:02; d ¼ 0:01 and
r ¼ 10�6), (6) gives p� ¼ 0:0016 while the transition
occurs around p ¼ 0:0015 in our numerical calculation
of the full stochastic model (Fig. 3).

2.4. Reversible mutations at the strategy locus

Given that innate behavior was the primordial state,
neither individual nor social learning could have arisen
without mutation. Hence, introducing reversible muta-
tion among the three strategies enhances the realism of
our model. When an individual learner (IL) or a social
learner (SLC or SLW) mutates to an innate (G),
the allele it carries at the innate information locus will
be expressed. Hence, it is necessary to keep track
of the class of allele, resident or mutant, occurring
at the innate information locus in individual and
social learners as well as in the innates. We do
this by distinguishing the frequencies of non-innate
organisms with resident and mutant alleles by subscripts
r and m, respectively. Thus, for example, the frequency
of a SLC with a resident allele is denoted by xr: There
are a total of eight variables, seven of which are
independent.

Recall that resident alleles produce adaptive behavior
whereas mutant alleles produce maladaptive behavior in
the current environmental state. The class, resident or
mutant, is defined relative to the environmental state.
When the environment changes, each organism inherits
the parental allele but the class of the allele changes. We
assume that a small fraction (r) of all alleles at the
innate information locus becomes resident alleles in the
post-change generation, regardless of the status in the
pre-change generation. In other words, the class of an
allele at the innate information locus is reset when the
environment changes: it becomes a resident allele with
probability r and a mutant allele with probability 1 � r:

Let the mutation rate at the strategy locus be m. We
assume reversible unbiased mutation among the three
strategies, G, SL and IL, which occurs before asexual
reproduction. The frequencies of genotypes after muta-
tion are denoted by

u� ¼ uð1 � mÞ þ ðxr þ yrÞm=2 þ zrm=2;

v� ¼ vð1 � mÞ þ ðxm þ ymÞm=2 þ zmm=2;

xn

r þ yn

r ¼ um=2 þ ðxr þ yrÞð1 � mÞ þ zrm=2;

xn

m þ yn

m ¼ vm=2 þ ðxm þ ymÞð1 � mÞ þ zmm=2;

znr ¼ um=2 þ ðxr þ yrÞm=2 þ zrð1 � mÞ;

znm ¼ vm=2 þ ðxm þ ymÞm=2 þ zmð1 � mÞ: ð7Þ
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The recursions for environmental stasis are

W 1u0 ¼ un;

W 1v0 ¼ ð1 � sÞvn;

W 1x0
r ¼ ð1 � dÞðxn

r þ yn

r Þðu þ xr þ xm þ zr þ zmÞ;

W 1x0
m ¼ ð1 � dÞðxn

m þ yn

mÞðu þ xr þ xm þ zr þ zmÞ;

W 1y0
r ¼ ð1 � s � dÞðxn

r þ yn

r Þðv þ yr þ ymÞ;

W 1y0
m ¼ ð1 � s � dÞðxn

m þ yn

mÞðv þ yr þ ymÞ;

W 1z0r ¼ ð1 � cÞznr ;

W 1z0m ¼ ð1 � cÞznm: ð8Þ

The recursions for environmental change are

W 2u0 ¼ rðun þ vnÞ;

W 2v0 ¼ ð1 � sÞð1 � rÞðun þ vnÞ;

W 2x0
r ¼ 0;

W 2x0
m ¼ 0;

W 2y0
r ¼ ð1 � s � dÞðxn

r þ yn

r þ xn

m þ yn

mÞr;

W 2y0
m ¼ ð1 � s � dÞðxn

r þ yn

r þ xn

m þ yn

mÞð1 � rÞ;

W 2z0r ¼ ð1 � cÞðznr þ znmÞr;

W 2z0m ¼ ð1 � cÞðznr þ znmÞð1 � rÞ: ð9Þ

The model is rather complicated, but the recursions
for mutation and the recursions for innates and
individual learners are still linear. Therefore, we can
perform an analysis similar to the previous one. First,
we consider periodically changing environments. Con-
sider the reduced dynamical system in ðu; v; zr; zmÞ

T :
Using matrices

M ¼

1 � m 0 m 0

0 1 � m 0 m

m 0 1 � m 0

0 m 0 1 � m

0
BBB@

1
CCCA;

x ¼

1 0 0 0

0 1 � s 0 0

0 0 1 � c 0

0 0 0 1 � c

0
BBB@

1
CCCA;

and

F ¼

r r 0 0

1 � r 1 � r 0 0

0 0 r r

0 0 1 � r 1 � r

0
BBB@

1
CCCA;

the state after nl generations is given by the following
transformation:

ðZxFMÞðZxMÞ
l�1

� �n
¼ ðZxFMÞZðxMÞ

l�1
� �n

¼ ZxFMðxMÞ
l�1

� �n
¼ Z xFMðxMÞ

l�1
� �n

;

where we used MZ ¼ ZM; FZ ¼ ZF and ZxZ ¼ Zx: Thus,
xFMðxMÞ

l�1 determines the behavior of the system. The
transformation is linear, but it is too complicated to deal
with analytically. We numerically examined the largest
eigenvalue and the corresponding eigenvector of
xFMðxMÞ

l�1 by the power method (assuming parameter
values s ¼ 0:1; c ¼ 0:02; r ¼ 10�6 and m ¼ 10�6). For
most l values, the dominant eigenvector changes
gradually as l is varied. However, it changes very
sharply from (10�9, 0.003, 10�6, 0.996) to (10�6, 0.979,
10�8, 0.02) as l changes from 683 to 684. Such a
transition occurs only once and we estimate l� ¼ 683:
Associated with this transition, the average frequencies
of innates and individual learners over l generations,
derived from

1

l

Xl�1

i¼0

xMð Þ
ih;

where h is a dominant eigenvector, change from
(10�4, 0.999) to (0.354, 0.645). These results mean that
the overall behavior remains similar when we
introduce reversible mutations at the strategy locus.
On the other hand, a major difference predicted
by the reduced model is that individual learners
will coexist with innates at significant frequency
(� m) when l4l�: A possible reason for this polymorph-
ism of individual learners and innates is that the
rate of increase (or multiplication factor) of the
individual learners is no longer a constant (i.e., 1 � c)
divided by the mean fitness, but depends on the
frequencies of the other phenogenotypes (Eq. (7)).
This frequency dependence, although weak, may main-
tain the individual learners in a polymorphic state even
when l4l�; particularly in the neighborhood of the
critical period l� where selection favoring the innates is
also weak.

The results of the numerical iterations of the full
model (Eqs. (7)–(9)) are shown in Fig. 4. The threshold
occurs at l ¼ 684; which is in good agreement with the
predicted value of l� ¼ 683: Individual learners and
innates dominate when l4684 (the first mode), while
individual and social learners dominate when lp684
(the second mode). The frequency of individual learners
in the first mode is non-negligibly large as is predicted by
the reduced model. Due to the mutations at the strategy
locus, social learners also exist in the first mode but their
frequency is of the order of mutation rate, m; and
similarly for the frequency of innates in the second
mode. Thus, at the evolutionary equilibrium, interac-
tions between social learners and innates are rare.

Lastly, we study the model including both stochasti-
cally changing environments and mutations at the
strategy locus. The numerical analysis shows that the
overall tendency is similar to the previous models
(Fig. 5). The only difference is that the overlapping
region is larger.



ARTICLE IN PRESS

Fig. 5. The result of the model with mutations at the strategy locus

and stochastic environmental changes. The graph is drawn in the same

way as Fig. 3. Parameters are s ¼ 0:1; c ¼ 0:02; r ¼ 10�6 and m ¼

10�6:

Fig. 4. The result of the model with mutations at the strategy locus

and periodic environmental changes. The graph is drawn in the same

way as Fig. 2. Parameters are s ¼ 0:1; c ¼ 0:02; r ¼ 10�6 and m ¼

10�6:
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3. Discussion

Building on the work of Boyd and Richerson (1985,
1988), Rogers (1988), and Feldman et al. (1996), Aoki et
al. (submitted) showed that individual learning, social
learning, and innate determination of behavior are
favored by natural selection when environmental
changes occur at short, intermediate, and long intervals,
respectively. In this paper, we analyzed and extended
Aoki et al.’s models in order to give more strong
evidences supporting the hypothesis. First, we carried
out a mathematical analysis of the model. Analyzing the
reduced linear dynamics, the evolution of learning
ability is described in terms of the eigenvalue problem.
The analysis not only supports the hypothesis but also
explains the sharp transition of two modes and gives an
analytic expression for the critical frequency of environ-
mental change. Second, we introduced more biologically
realistic assumptions including reversible mutation at
the strategy locus, which was ignored in the basic model.
The general model also supports the hypothesis.

In the basic model, we have shown that only innates
dominate and both social and individual learners go to
extinction when the period of environmental change is
long (l4l�). The introduction of reversible mutations
results in the coexistence of strategies. The frequency of
each strategy is maintained above a certain level
supported by the continuous flow of mutations. As the
mutation rate is low, we would not expect mutation to
have a major effect on these frequencies. However, our
analysis shows that the equilibrium frequency of
individual learners is significantly larger than that
expected by the mutation rate alone. This is not only
mathematically interesting but also reminds us that
simplifications (such as neglecting rare mutations) do
not always produce the expected outcome. In conclu-
sion, when we assume a low mutation rate at the
strategy locus, innates and individual learners coexist
when the period of environmental change is long.

When the environment changes periodically, social
learners and innates do not coexist at significant
frequencies. Therefore, only those behaviors that can
be ‘‘invented’’ by the individual learning process can be
socially transmitted. The ‘‘content of culture’’ is limited
by the capacity for individual learning as much as by the
capacity for social learning. This argument was origin-
ally made by Aoki et al. (submitted), and the present
study shows that it is valid even when we introduce
mutations at the strategy locus. On the other hand,
when the environment changes stochastically, the
transition of two modes is more gradual. Moreover,
the overlapping region is larger when we introduce
mutations among the strategies. These results suggest
that the content of culture basically comes from what
individual learners invented, but it may also come
from innate behaviors when the environment changes
randomly.

There remains the task of testing the predictions
against data on the phylogenetic distribution of social
learning. This would be a formidable undertaking, and
we do not attempt it here. One problem lies with our
modeling approach, where we have followed Rogers
(1988) in assuming that behavior is obligate. Any real
behavior cannot easily be classified as innate, socially
learned, or individually learned, and many behaviors
will actually involve all three processes. Hence, the
predictions of our models serve a heuristic purpose but
cannot readily be applied to data. Boyd and Richerson
(1985, 1988) have introduced more realistic models that
recognize the facultative nature of behavior. Unfortu-
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nately, the price of this realism has been lack of
amenability to detailed mathematical treatment (but
see Feldman et al., 1996).
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Appendix A

A normalization operator is defined as

Z : x 7!
x

xk k
;

where x ¼ ðx1;x2; :::; xNÞ is an arbitrary vector and

xk k �
XN

i¼1

xi

is a scalar. Here we prove

ðZzÞn � x ¼ Zzn
� x ðA:1Þ

for any positive integer n and any linear transformation
z: Note that

Z � ðcxÞ ¼
cx

cxk k
¼ Z � x

and

z � ðcxÞ ¼ cz � x

for any non-zero scalar c. The proof uses the principle of
mathematical induction. When n ¼ 1; Eq. (A.1) is true
by definition. If it is true when n ¼ m; then it is also true
when n ¼ m þ 1 because

ðZzÞmþ1
� x ¼ Zz �

zmx

zmx
�� �� ¼ Z �

1

zmx
�� �� zmþ1

� x

 !
¼ Zzmþ1

� x

This completes the proof, of Eq. (A.1).
Appendix B

Here, we prove that social learners cannot invade a
population consisting mostly of innates but in which
individual learners may also be present at a low
frequency. Recursions (1) can be rewritten as

W 1u0 ¼ u;

W 1v0 ¼ ð1 � sÞv;

W 1x0 ¼ ð1 � dÞðx þ yÞu;

W 1y0 ¼ ð1 � s � dÞðx þ yÞv;

W 1z0 ¼ ð1 � cÞz;
when x; y; z � 1: Substituting the explicit expression for
W 1; we obtain

x0 þ y0 �
ð1 � dÞu þ ð1 � s � dÞv

u þ ð1 � sÞv
ðx þ yÞ �

1 � d � sv

1 � sv
ðx þ yÞ;

where we neglected the higher-order terms of x; y and z:
This equation means x þ y decreases while the environ-
ment remains constant. When the environment changes,

W 2ðu
0 þ v0Þ ¼ ð1 � s þ srÞðu þ vÞ

W 2ðx
0 þ y0Þ ¼ ð1 � s � dÞðx þ yÞ

and thus x þ y decreases. This completes the proof.
Notice that the result is independent of parameter
values.
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