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Abstract

Female-biased sex ratio in local mate competition has been well studied both theoretically and experimentally. However, some

experimental data show more female-biased sex ratios than the theoretical predictions by Hamilton [1967. Science 156, 477–488] and

its descendants. Here we consider the following two effects: (1) lethal male–male combat and (2) time-dependent control (or

schedule) of sex ratio. The former is denoted by a male mortality being an increasing function of the number of males. The optimal

schedule is analytically obtained as an evolutionarily stable strategy (ESS) by using Pontrjagin’s maximum principle. As a result, an

ESS is a schedule where only males are produced first, then the proportion of females are gradually increased, and finally only

females are produced. Total sex ratio (sex ratio averaged over the whole reproduction period) is more female-biased than the

Hamilton’s result if and only if the two effects work together. The bias is stronger when lethal male combat is severer or a

reproduction period is longer. When male–male combat is very severe, the sex ratio can be extraordinary female-biased (less than

5%). The model assumptions and the results generally agree with experimental data on Melittobia wasps in which extraordinary

female-biased sex ratio is observed. Our study might provide a new basis for the evolution of female-biased sex ratios in local mate

competition.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Primary sex ratio has been widely studied in evolu-
tionary biology. According to Fisher’s theory (Fisher,
1958), the investments by parents to male and female
offsprings will evolve to be equal. This explains why
primary sex ratio (defined as the proportion of males) in
many creatures is 1/2. However, there are some
exceptional cases. Hamilton (1967) first explained
female-biased sex ratios in local mate competition
(LMC). LMC occurs when matings among related
individuals are often. For many gregarious parasitoid
wasps, matings often take place among offsprings
e front matter r 2005 Elsevier Ltd. All rights reserved.
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produced by one or a few foundresses that parasitize a
host. Only mated females disperse to new patches as new
foundresses. Under such LMC, female-biased sex ratio
is favored because it reduces competition for mates
among brothers and increases the number of daughters
as potential foundresses. Through their haplo-diploid
sex determination system, an ovipositing female wasp
can change her primary sex ratio and female-biased sex
ratios are actually observed (Werren, 1980; Herre, 1985,
1987). A primary sex ratio of 1/4 in haplo-diploid social
insects is then explained by assuming that workers are in
control of the sex ratio (for review, see Trivers, 1985).
Many authors proposed evolutionary game models

for the optimal sex ratio under LMC (Hamilton, 1967;
Suzuki and Iwasa, 1980; Wilson and Colwell, 1981;
Bulmer and Taylor, 1980; Taylor and Bulmer, 1980;
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Herre, 1985; Frank, 1985, 1986, 1987; van Tienderen
and de Jong, 1986). Recently, Courteau and Lessard
(2000) proposed a generalized model that involves many
previous results as special cases. They considered (1)
haplo-diploid, haplo or diploid populations, (2) mater-
nal or paternal control of sex ratio, (3) the limitation of
host resources, (4) partial dispersal before mating
resulting in partial outbreeding, and (5) partial dispersal
after mating. They derived ESS and CSS sex ratios
for various combinations of the assumptions (1)–(4).
Neglecting unrealistic cases (paternal control in haplo-
diploid population), the optimal sex ratio in super-
parasitism is at least 3/14 (this occurs when two
haplo-diploid foundresses parasitize a host and control
sex ratio with no limitation of host resources and no
dispersal before mating) and increases to approach 1/2
as the number of foundresses or the degree of out-
breeding increase. In completely inbred populations (for
example, when superparasitism is quite rare), the
optimal sex ratio for a two foundresses case is slightly
smaller than 3/14 (Herre, 1985). The stochastic effect
(stochastic brood size per foundress, stochastic number
of foundress per host, finite population, extinction of a
colony due to the absence of one sex, etc.) also changes
the optimal sex ratio slightly (Frank, 1985; Nishimura,
1993; Courteau and Lessard, 1999). Despite all these
theoretical predictions, extraordinarily small sex ratios
(less than 5%) are observed in LMC in Melittobia wasps
even when multiple foundresses parasitize a host (Abe
et al., 2003a; Cooperband et al., 2003). When the group
size (the number of foundresses) is variable, the sex ratio
is predicted to be very female-biased when the average
group size is close to one (Nunney and Luck, 1988).
However, the sex ratio of this species can neither be
explained by this model because more than one
foundress often attack a host in nature (Cooperband
et al., 2003; Abe et al., 2005). In this study, we consider
the following two points that may explain the extra-
ordinary small sex ratios.
The first is the effect of lethal male combat. In many

creatures, competition for mates among males is
observed. Actually, severe male–male combat is ob-
served in Melittobia wasps and this has been proposed
as a possible cause of the extraordinary female-biased
sex ratio (Abe et al., 2003a, b). When the competition is
lethal (lethal male combat), the mortality of males
depends on the intensity of the combat. Thus, we
assume male mortality is an increasing function of the
number of males. This assumption is justified in a
Melittobia case (Abe, personal communication)
although some studies show different patterns (West et
al., 2001; Reinhold, 2003). In random mixing popula-
tions, the sexual difference in mortality does not change
the optimal sex ratio because the loss of fitness due to
the death of a male is exactly cancelled by the increase in
the value of a male that survived. However, in LMC, the
problem is more complicated because we need to
consider the reduction of competition for mates caused
by increased male mortality.
The second is the problem of the schedule of sex ratio.

Although primary sex ratios are 1/2 in many creatures,
they are not always constant during a reproduction
period. For example, some sea mammals bear more
males in the first half of a reproduction period and then
bear more females in the second half (reviewed by
Trivers, 1985). Haplo-diploid wasps might also be able
to control their primary sex ratio at each stage of their
reproduction period. In Melittobia wasps, a foundress
continues to lay eggs in the same host for long
reproduction period and thus the scheduled game (when
to lay male eggs) may play an important role in
superparasitism (Abe et al., 2005). Female wasps
disperse soon after copulation while males stay at a
host and are able to mate many females until they die.
Thus, it might be adaptive to produce males first. On the
other hand, in order to avoid competition for mates, it
might be adaptive to produce more males when there
exist fewer males. The latter effect might be stronger
when male–male combat is more severe and lethal.
Actually, Melittobia wasps lay male eggs intermittently
rather than intensively (Abe et al., 2005). There are some
theoretical studies on the schedule of sex ratio (e.g.
Iwasa and Odendaal, 1984; West and Godfray, 1997)
but few models focuses on sex ratio control in LMC (but
see Frank (1987) for a model of inter-generational
change of sex ratio).
In this paper, we construct mathematical models to

study these effects. First, we study the effect of lethal
male combat alone by using a static model. Then, we
construct a dynamical model describing the number of
males on a host during a reproduction period. For
simplicity, we only consider the symmetric case in which
foundresses keep laying eggs on the same host for the
same reproduction period. The optimal schedule of sex
ratio is obtained as a Nash equilibrium of the scheduled
game, which is derived using Pontrjagin’s maximum
principle. Then, the effect of lethal male combat is
incorporated into this scheduled game model by setting
the mortality of males as an increasing function of the
number of males. The dependence of the optimal
schedule on this mortality function is studied.
2. Model and result

2.1. Assumptions

Since there had been many theoretical studies on sex
ratios in LMC, we first summarize the assumptions of
our model to avoid confusion. According to Frank
(1985), there are two effects that favor female-biased sex
ratio. One is the effect of asymmetric inheritance (in
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haplo-diploid species) and the other is Wright’s index of
panmixia. Due to the former, the relatedness to
daughters becomes slightly larger than that to sons in
LMC. The latter is the effect of assortative mating, i.e.
frequent sib-mating that is essential to LMC. In this
study, we neglect the former for simplicity and focus
only on the latter. In other words, we assume diploid
populations. This assumption justifies us to adopt a
simple and intuitive method for calculating fitness. We
consider a situation where N foundresses parasitize the
same host with N being constant. Only daughters
disperse after mating. Sons contribute to their mother’s
fitness by mating these dispersing daughters. We assume
that every daughter achieves a constant amount of
reproductive success, i.e., the resource is not limited. We
assume no dispersal of males, no dispersal of females
before mating, no inbreeding depression and no
generation overlap. We assume the symmetric game,
i.e., foundresses are equal in all traits such as fertility,
mortality, fighting ability of her son and so on. Mating
occurs randomly among offsprings (no kin recognition,
no mechanism to avoid incest). In scheduled models, all
foundresses start and stop producing offsprings simul-
taneously.

2.2. Non-scheduled model with lethal male combat

Consider a non-scheduled game played by two
foundresses (N ¼ 2). Let x and y be their primary sex
ratios. Fitness functions are

Fxðx; yÞ ¼ sdbð1� xÞ þ
ssbx

ssbx þ ssby

� sdfbð1� xÞ þ bð1� yÞg,

Fyðx; yÞ ¼ sdbð1� yÞ þ
ssby

ssbx þ ssby

� sdfbð1� xÞ þ bð1� yÞg,

where sd and ss are the survival rates of a daughter and a
son, respectively. ss ¼ ssðx; yÞ is a decreasing function of
x and y, which represents lethal male combat. b is the
number of eggs per foundress. The first term represents
the gain of fitness through daughters while the second
term through sons. Dividing by sdb, we can normalize
the fitness functions as

Fxðx; yÞ ¼ ð1� xÞ þ
x

x þ y
ð2� x � yÞ,

Fyðx; yÞ ¼ ð1� yÞ þ
y

x þ y
ð2� x � yÞ.

The Nash equilibrium of the game is the pair of the
strategies ðx	; y	Þ such that x	 maximizes Fxðx; y	Þ and
that y	 maximizes Fyðx

	; yÞ. As Hamilton (1967)
showed, the solution is ðx	; y	Þ ¼ ð1=4; 1=4Þ.
It is worth noticing that the sexual difference in

survival rates of offspring do not influence the optimal
sex ratio. This is true even if the survival rate of males is
any function of sex ratio. Here, we conclude that lethal
male combat does not influence the optimal sex ratio in
a non-scheduled LMC model (but see Abe et al. (2003b)
for asymmetric cases).

2.3. Scheduled model without lethal male combat

Here we explicitly consider a time axis. Assume two
foundresses, namely X and Y, produce offsprings during
a reproduction period 0ptpT . Without loss of general-
ity, we rescale time so that each foundress produces unit
offspring per unit time. Let x(t) and y(t) be the schedule
of their primary sex ratios. Thus, during a time inter-
val [t; t þ dt], a foundress X produces x(t) dt males and
ð1� xðtÞÞdt females. A foundress X tries to maximize
her fitness Fx by changing x(t), i.e. x(t) is a strategy of a
foundress X. Similarly, y(t) is a strategy of a foundress
Y. Fitness functions are

F x ¼

Z T

0

ð1� xÞ þ
mx

mx þ my

ð2� x � yÞ dt;

F y ¼

Z T

0

ð1� yÞ þ
my

mx þ my

ð2� x � yÞ dt; ð1Þ

where mx and my denote the numbers of sons on a host,
the dynamics of which are

d

dt
mx ¼ �gmx þ x,

d

dt
my ¼ �gmy þ y, ð2Þ

where g represents a natural mortality. Note that time is
rescaled and thus g ¼ G=B, where G and B are a natural
death rate of sons and a fecundity rate of foundresses
measured in non-rescaled (original) time, respectively.
At this stage, we do not consider lethal male combat and
thus g is a constant.
The fitness of a foundress Y depends on the

opponent’s strategy x(t) as well as her own strategy
y(t). For the sake of explanation, we first seek the
optimal y(t) that maximizes Fy when x(t) is fixed. This
type of dynamic optimization problem can be solved by
using Pontrjagin’s maximum principle (for an applica-
tion of the principle to problems in social evolution, see
Day and Taylor (1997)). The principle assures that the
optimal y(t) maximizes Hamiltonian H at every moment
(a necessary condition for optimality). In our case, H is
denoted by

H ¼ ð1� yÞ þ
my

mx þ my

ð2� x � yÞ þ lð�gmy þ yÞ

¼ 1þ
my

mx þ my

ð2� xÞ � lgmy

þ l� 1�
my

mx þ my

� �
y, ð3Þ
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where l is a co-state variable which obeys the following
equations:

d

dt
l ¼ �

qH

qmy

¼ �
mx

ðmx þ myÞ
2
ð2� x � yÞ þ gl, (4)

lðTÞ ¼ 0. (5)

Biologically, the co-state variable lðtÞ can be interpreted
as the value of a son at time t. As H is a linear function
of y,

l ¼ 1þ
my

mx þ my

(6)

must hold when intermediate sex ratios (0oyðtÞo1) are
optimal. The right-hand side represents a net increase in
fitness by producing a daughter while l represents that
by producing a son. Only when the two values are
equal, the optimal sex ratio takes an interior value
in [0,1]. Hereafter, for simpler notation, we define
z 
 my; a 
 mx. Putting

y ¼ gz þ z0 (20)

(the prime symbol denotes the derivative with respect to
time) and

l ¼ 1þ
z

a þ z
(60)

into Eq. (4) yields

z0ða þ zÞ � zða0 þ z0Þ

ða þ zÞ2

¼
�að2� x � gz � z0Þ þ gða þ zÞ2 þ gzða þ zÞ

ða þ zÞ2

or

2gz2 þ ð4agþ a0Þz � að2� xÞ þ ga2 ¼ 0 (7)

which is a quadratic equation of z(t) (note that a(t) and
x(t) are fixed here). This equation gives the optimal
control when 0oyðtÞo1.
An ESS of a scheduled game is the strategy x	ðtÞ such

that x	ðtÞ is the best response (optimal control) to itself.
Thus, x	ðtÞ must satisfy Eq. (7) when xðtÞ ¼ yðtÞ and
aðtÞ ¼ zðtÞ. Putting these into Eqs. (20) and (7) yields

2gz2 þ ð4gz þ z0Þz � zð2� gz � z0Þ þ gz2 ¼ 0

or

8gz2 � 2z þ 2zz0 ¼ 0. (8)

The solution is z ¼ 0 or

z ¼
1

4g
ð1� e�4gtÞ, (9)

where an integral constant is determined by the initial
condition zð0Þ ¼ 0. Putting Eq. (9) into Eq. (20), an ESS
is denoted by

x ¼ y ¼
1þ 3e�4gt

4
(10)

which monotonically decreases from xð0Þ ¼ 1 to
xð1Þ ¼ 1=4. As g is larger, the decrease is quicker,
while the sex ratio approaches 1/4 regardless of g.
Note that this is the condition that an ESS must

satisfy when 0oxðtÞo1. At the end of the period, the
control is expected to be on its edge (x ¼ 0). Mathema-
tically, this is required by the terminal condition Eq. (5).
As long as the sex ratio is symmetric and intermediate,
l ¼ 3=2 (see Eq. (6)). When it is switched from Eq. (10)
to x ¼ 0 at t ¼ Tc, l begins to decrease and reaches zero
at t ¼ T . This condition determines Tc. When x ¼ 0,
Eqs. (2) and (4) become

d

dt
z ¼ �gz,

d

dt
l ¼ �

1

2z
þ gl

or

z ¼ zðTcÞe
�gðt�TcÞ,

d

dt
l ¼ �

egðt�TcÞ

2zðTcÞ
þ gl.

The solution is

lðtÞ ¼
3

2
�

t � Tc

2zðTcÞ

� �
egðt�TcÞ.

Tc is determined by lðTÞ ¼ 0. Finally, we obtain a
complete notation of an ESS,

xðtÞ ¼

1þ 3e�4gt

4
ð0ptoTcÞ;

0 ðTcptoTÞ;

8<
: (11)

where Tc is a solution of Tc ¼ T � 3zðTcÞ. The ES sex
ratio and the number of males as functions of time are
plotted in Fig. 1. When g ¼ 0, Eq. (11) reduces to

xðtÞ ¼
1 ð0pto1=4Þ;
0 ð1=4ptoTÞ;

(

which means that producing female offspring earlier
than the opponent has no advantage when males never
die. Notice that the total sex ratio of all offsprings
during the reproduction period is always equal to 1/4
because

1

T

Z T

0

xðtÞ dt

¼
1

T

Z Tc

0

1þ 3e�4gt

4
dt ¼

Tc

4T
þ
3

4T
�
e�4gt

4g


 �Tc

0

¼
Tc

4T
þ
3

4T
zðTcÞ ¼

1

4

holds.



0

0.2

0.4

0.6

0.8

1

0 120 240 360 480
time [hour]

op
tim

al
  s

ex
 r

at
io

0

2

4

6

8

10

12

th
e 

nu
m

be
r 

of
 m

al
es

Fig. 2. Optimal sex ratio (bold filled circles) and the number of males

on a host (solid line) are plotted against time (see text for details

T ¼ 480, c ¼ 0:001).
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Fig. 1. Scheduled model without lethal male combat. Optimal primary

sex ratio (bold filled circles) and the number of males on a host (solid

curve) are plotted against time. Parameter values are T ¼ 480 and

g ¼ 0:002 which are consistent with the experimental data of

Melittobia wasps (Abe et al., 2003a).
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As a conclusion of this subsection, the ESS schedule
of sex ratio is not constant but a decreasing function of
time. However, the total sex ratio is independent of a
natural mortality of males and fecundity of foundresses.
Even when mortality of a son is very large, the sex ratio
is controlled toward 1/4, which means the operational
sex ratio becomes strongly female-biased (Eq. (9)).

2.4. Scheduled model with lethal male combat (simple

case)

Here we consider the effect of lethal combat among
males. We use the same fitness functions,

Fx ¼

Z T

0

ð1� xÞ þ
mx

mx þ my

ð2� x � yÞ dt;

Fy ¼

Z T

0

ð1� yÞ þ
my

mx þ my

ð2� x � yÞ dt;

while the dynamics of the number of sons includes the
effect of the combat,

d

dt
mx ¼ �cðmx þ myÞmx þ x,

d

dt
my ¼ �cðmx þ myÞmy þ y.

Here we assume that the frequency of combat per male
is proportional to an encounter rate that is proportional
to the number of males. Therefore, due to the lethal
male combat, every male suffers the mortality cðmx þ

myÞ where c represents the intensity of the combat. For
simplicity, we ignore a natural mortality.
In this case, an ESS becomes

xðtÞ ¼

2
11
yðtÞ ð0ptoTcÞ;

0 ðTcptoTÞ;

(
(12)
where yðtÞ
 ða2þ20aþ1Þ=ðaþ1Þ2 with a 
 expð2
ffiffiffiffiffiffiffi
11c

p
tÞ

(for details, see the following subsection and Appendix
A). Therefore, the ESS sex ratio is x(0) ¼ 1 and
decreases to approach 2/11. It is difficult to derive the
analytical expression of Tc and hence the total sex ratio.
In fact, it depends on both the intensity of combat (c)
and a reproduction period (T ). We numerically derived
ESSs and the total sex ratios for some parameter values
(Figs. 2 and 3). In general, the total sex ratio decreases
from 1/4 to 2/11 as T or c increases.
The major difference from the previous model is that

the ESS sex ratio is controlled toward 2/11. Notice the
intensity of combat (c) does not change this value. The
existence of lethal male combat alone changes the result.

2.5. Scheduled model with lethal male combat (general

case)

We here relax the assumption about the number
foundresses (N). For arbitrary NðX2Þ, fitness functions
are

F i ¼

Z T

0

ð1� xiÞ þ
miPN

j¼1 mj

XN

j¼1

ð1� xjÞ

" #
dt;

where i is an index for each foundress. We also consider
more general classes of mortality functions. The first is a
class of power functions denoted by

d

dt
mi ¼ �c

XN

j¼1

mj

 !n

mi þ xi.

Both c and n represent the intensity of combat. For
example, assume there are M males on a host. The
mortality per time per individual is cMn and thus the
probability with which a focal individual survives
combat among these M males for t time is expð�cMntÞ

(Fig. 4). As n becomes larger, the probability becomes a
more rapidly decreasing function of M. When n is
very large, it becomes like a Heaviside function,
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corresponding to the situation in which there is the
maximum number of males that can coexist on a host.
Such a situation is biologically expected when the area
that each male can patrol is limited. Detailed analysis
(see Appendix A) shows that there exists a unique ESS
that satisfies x	ð0Þ ¼ 1 and monotonically decreases with
time to approach

X ¼
NðN � 1Þ

NðN � 1Þ þ ðN þ 1ÞðN þ nÞ
.

It is also proved that x	 ¼ 0 only for the last some period.
As N ! 1, X ! 1

2
which is Fisher’s equal investment

result. When n ¼ 0 (no lethal male combat), X ¼ ðN �

1Þ=2N that is equivalent to the former result (Hamilton,
1967). When N ¼ 2, X ¼ 2=ð3n þ 8Þ that apparently
involves the two preceding results as special cases.
The second is a class of exponential functions denoted

by

d

dt
mi ¼ �g exp k

XN

j¼1

mj

 !
mi þ xi,
where g denotes a natural mortality (mortality when
males are absent) and k represents the intensity of the
combat. Detailed analysis (see Appendix B) shows that
an ESS satisfies x	ð0Þ ¼ 1 and monotonically decreases
to approach an equilibrium value that decreases as k

increases or g decreases. We expect that x	 ¼ 0 for the
last some period.
In both cases, we numerically confirmed that total sex

ratio is lower when lethal male combat is more severe
(Table 1), the number of foundresses is smaller, or a
reproduction period is longer (Fig. 5).
3. Discussion

We have studied the optimal primary sex ratio in local
mate competition. In the non-scheduled game model,
the sexual difference in mortality does not change the
optimal sex ratio even when the difference is a function
of sex ratio itself. In biological words, the existence or
strength of lethal male combat does not matter when
foundresses lay eggs only once and leave. On the other
hand, in the scheduled game model without lethal male
combat, the optimal sex ratio is a decreasing function of
time. The foundress first produces only males and then
gradually increases the proportion of females so that her
primary sex ratio approaches to an equilibrium value.
Finally, she abruptly changes her behavior to produce
only females. Despite such a complex schedule, the total
sex ratio averaged over whole the reproduction period
remains unchanged, independent of the mortality of
males or the fecundity of foundresses. We have also
constructed the integrated model including lethal male
combat and schedule. The analytical treatment of the
model shows that the optimal schedule behaves qualita-
tively similar. However, both the equilibrium sex ratio
and total sex ratio are smaller than the former value.
The total sex ratio is a decreasing function of both a
reproduction period and the intensity of combat.
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Finally, we have constructed more generalized models
that can deal with arbitrary number of foundresses. The
mortality function of males (the way lethal male combat
works) has also been generalized. We have confirmed
that the result remains true in the generalized models.
Most of our results are consistent with experimental

data in Melittobia wasps (Abe et al., 2003a, 2005).
Observed emergence patterns show that males emerge
earlier than females on average. Observed sex ratio of
newly emerging wasps is around 3% when two
foundresses parasitized a host, which corresponds to
very severe male–male combat in our model. In a
male–male combat experiment in which two males are
introduced into a small chamber, either male killed his
opponent within 2 days in 49 pairs out of 53. These
qualitative agreements suggest that the integrated effect
of lethal male combat and schedule contributes to the
extraordinary female-biased sex ratio in Melittobia
wasps. Our model might also be applied to other species
where lethal male combat and LMC occurs, such as fig
wasps (West et al., 2001), Cardiocondyla ants (Cremer
and Heinze, 2002) and Ozopemon beetles (Jordal et al.,
2002).
It might be useful to describe how the present study is

related to previous theoretical studies most of which use
a kin-selection approach. Since we assume complete
dispersal of female (and thus foundresses competing in
the same host are not related), we did not need to
consider inclusive fitness. This reduces the complexity of
the problem and we could focus only on the effect of
dynamic structure (sequential decision making). How-
ever, complete mixing of females is impossible (dispersal
must be local to some extent) and foundresses sharing a
host are generally related. Many previous studies had
focused the effect of such a geographical structure. The
integration of the two different approaches might be
possible. Day and Taylor (1997) provide a generalized
Hamilton’s rule that can be applicable in a dynamic
game model. The expansion of the present study in this
direction might be an interesting subject.
Throughout the paper, we have implicitly assumed

that the optimal strategy is symmetric Nash equilibrium.
In our model, such a solution is always an evolutionarily
stable strategy (ESS). When we consider the evolution of
the schedule of primary sex ratio, however, several
analyses are necessary in order to show that a certain
ESS is evolutionarily reached. In this paper, we have
derived analytical expression of an ESS that is a prime
candidate of the evolutionary outcomes. The uniqueness
proof assures that there exists only one symmetric
(monomorphic) ESS. Detailed evolutionary simulation
might reveal if asymmetric (polymorphic) ESSs or non-
convergent evolutionary dynamics are possible, which is
left for future work.
Our model assumes complete symmetry between

foundresses and also between males. However, in
superparasitism in the field, there must be asymmetry
in the order by which a foundress finds a host and starts
laying eggs. Moreover, an experiment on male–male
combat in the Melittobia wasp shows that the order of
emergence plays an important role for males, i.e.,
preexisting males almost always kill a newly emerged
male (Abe et al., 2003a). In such an asymmetric game,
the optimal behavior could be different from our result,
which would be studied in future.
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Appendix A

The dynamics of the number of sons are denoted by

d

dt
mi ¼ �c

XN

j¼1

mj

 !n

mi þ xi.

We seek the optimal control for a foundress with i ¼ 1
when the other foundresses take the same wild-type
strategy. Let y ¼ x1 and x ¼ x2 ¼ x3 ¼ � � � ¼ xN .

H ¼ ð1� yÞ þ
m1PN
j¼1 mj

ðN � y � ðN � 1ÞxÞ

þ l �c
XN

j¼1

mj

 !n

m1 þ y

" #

¼ 1þ
m1PN
j¼1 mj

ðN � ðN � 1ÞxÞ þ l �c
XN

j¼1

mj

 !n

m1

" #

þ y l� 1�
m1PN
j¼1 mj

 !
,

dl
dt

¼ �
qH

qm1
¼ �

XN

j¼2

mj

XN

j¼1

mj

 !�2

ðN � y � ðN � 1ÞxÞ

þ cl
XN

j¼1

mj þ nm1

 ! XN

j¼1

mj

 !n�1

,

lðTÞ ¼ 0.

These are generalized equations for Eqs. (3)–(5). Here
we only consider a symmetric solution (ESS) and denote
z 
 mi. For the internal y to be optimal,

l ¼
N þ 1

N

and

x ¼ y ¼ z0 þ cðNzÞnz ¼ z0 þ cNnznþ1



z

λ

λ=(Ν+1)/Νx=1

x=0P
Q

R

Fig. 6. Phase plane analysis (see text for detail).
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hold. Putting these into

d

dt
l ¼ �

ðN � 1Þz

ðNzÞ2
ðN � NxÞ þ clðNz þ nzÞðNzÞn�1

¼ �
N � 1

Nz
ð1� xÞ þ clðN þ nÞzðNzÞn�1,

we obtain (after some algebra)

z0 ¼ f ðzÞ, (A.1)

f ðzÞ ¼ 1�
NðN � 1Þ þ ðN þ 1ÞðN þ nÞ

N � 1
cNn�1znþ1.

(A.2)

These are generalized form of Eq. (7). In a simple case
(n ¼ 1 and N ¼ 2), we can directly solve Eqs.
(A.1)–(A.2) to obtain Eq. (12). In general, f ð0Þ ¼ 1 and

f 0ðzÞ ¼ �
NðN � 1Þ þ ðN þ 1ÞðN þ nÞ

N � 1
cNn�1ðn þ 1Þzno0

for z40. For sufficiently large z, f ðzÞo0. Thus, f ðzÞ ¼ 0
has a unique solution

Z ¼ cNn�1 NðN � 1Þ þ ðN þ 1ÞðN þ nÞ

N � 1

� ��1=ðnþ1Þ

.

The solution of z0 ¼ f ðzÞ with the initial condition
z(0) ¼ 0 is the monotonic increase of z to converge to
stable equilibrium z ¼ Z. The sex ratio is

x ¼ 1�
NðN � 1Þ þ ðN þ 1ÞðN þ nÞ

N � 1
cNn�1znþ1 þ cNnznþ1,

¼ 1� cNn�1 ðN þ 1ÞðN þ nÞ

N � 1
znþ1,

which is a monotonically decreasing function of z. When
z ¼ 0, x ¼ 1. When z ¼ Z,

x ¼ 1�
ðN � 1Þ

NðN � 1Þ þ ðN þ 1ÞðN þ nÞ
�
ðN þ 1ÞðN þ nÞ

N � 1

¼
NðN � 1Þ

NðN � 1Þ þ ðN þ 1ÞðN þ nÞ
.

Therefore, x(t) monotonically decreases from xð0Þ ¼ 1
to approach the above expression.
We have obtained how the ESS sex ratio changes

when it takes an intermediate value (0oxo1). Next we
check the terminal condition. l must decrease from
ðN þ 1Þ=N to 0. When x ¼ 0,

z0 ¼ �cNnznþ1

or

1 ¼ ðcNnnt þ CÞzn.

As long as z40, z(t) monotonically decreases to
converge to zero but z ¼ 0 is impossible. As

d

dt
l ¼ �

N � 1

Nz
þ clðN þ nÞNn�1zn (A.3)
holds, dl=dt ! �1 when z ! þ0. This shows the
terminal condition lðTÞ ¼ 0 can be satisfied by setting
x ¼ 0 for a finite period.
We have now found a solution satisfying the

conditions Pontrjagin’s maximum principle requires.
Next, we prove the uniqueness of the solution. The
optimal control is

x ¼

0 lo
N þ 1

N

� �
;

1 l4
N þ 1

N

� �
:

8>>><
>>>:

Using this and

dl
dt

¼
N � 1

Nz
ðx � 1Þ þ cðN þ nÞNn�1znl,

dz

dt
¼ x � cNnznþ1

we can perform phase plane analysis on ðz; lÞ space
(Fig. 6). z ¼ ðcNnÞ

�1=ðnþ1Þ is an isocline for z when x ¼ 1.
l ¼ ðN � 1Þ=cðN þ nÞNnznþ1 is an isocline for l when
x ¼ 0. Note that on a line l ¼ ðN þ 1Þ=N, the vector
field is not uniquely determined. In order to remain on
the line, the control must take a special function
0ox	ðtÞo1, which we have obtained in the preceding
analysis. The initial and terminal conditions are zð0Þ ¼ 0
and lðTÞ ¼ 0, respectively. Thus, the solution must start
from any point on l-axis and reach any point on z-axis
at T ¼ 0. Looking into Fig. 6, it is apparent that such a
solution must start from P, move right on a l ¼

ðN þ 1Þ=N line to reach Q, and then reach R by setting
x ¼ 0 (see Fig. 6).
Define T ¼ TP!Q þ TQ!R. Note that staying at

point P is impossible because setting x40 causes
increase in z and because setting x ¼ 0 causes decrease
in l. Staying at point Q is also impossible because z	ðtÞ is
a monotonically increasing function of t. The point R is
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uniquely determined by the point Q. Let z-coordinate of
Q be zQ. We prove both TP!Q and TQ!R are strictly
increasing functions of zQ, which proves the uniqueness
of the point Q. The first part is obvious because we have
already shown that z (strictly) monotonically increases
when 0oxo1. When x ¼ 0, Eq. (A.3) shows that dl=dt

is a strictly monotonically increasing function of z.
Thus, it takes more time for l to decrease from ðN þ

1Þ=N to zero as zQ is larger. This proves the second part.
As z ! 0, dl=dt ! �1 and thus T ! 0 as zQ ! 0.

Therefore, there always exist a unique solution P !

Q ! R for any T 40.
Appendix B

In this case, we obtain

d

dt
mi ¼ �g exp k

XN

j¼1

mj

 !
mi þ xi,

H ¼ ð1� yÞ þ
m1PN
j¼1 mj

ðN � y � ðN � 1ÞxÞ

þ l �g exp k
XN

j¼1

mj

 !
m1 þ y

" #

¼ 1þ
m1PN
j¼1 mj

ðN � ðN � 1ÞxÞ

þ l �g exp k
XN

j¼1

mj

 !
m1

" #
þ y l� 1�

m1PN
j¼1 mj

 !
,

dl
dt

¼ �
qH

qm1
¼ �

XN

j¼2

mj

XN

j¼1

mj

 !�2

ðN � y � ðN � 1ÞxÞ

þ kgl exp k
XN

j¼1

mj

 !
m1 þ gl exp k

XN

j¼1

mj

 !
,

lðTÞ ¼ 0.

We denote z 
 mi again. For the internal y to be
optimal,

l ¼
N þ 1

N

and

x ¼ y ¼ z0 þ gAz

hold where A 
 expðkNzÞ. Putting these into

d

dt
l ¼ �

N � 1

Nz
ð1� xÞ þ glAð1þ kzÞ

we obtain

z0 ¼ gðzÞ,
gðzÞ ¼ 1� gAz 1þ
N þ 1

N � 1
ð1þ kzÞ

� �
.

As gð0Þ ¼ 1 and g0ðzÞo0, z(t) monotonically increases to
converge to the equilibrium z ¼ Z where gðZÞ ¼ 0. The
sex ratio

x ¼ 1� gAz
N þ 1

N � 1
ð1þ kzÞ

monotonically decreases from xð0Þ ¼ 1 to

X ¼
N � 1

2N þ ðN þ 1Þa
,

where a ¼ kZ and it satisfies

1þ
N þ 1

N � 1
ð1þ aÞ

� �
a expð2aÞ ¼

k

g
.

The left-hand side is monotonically increasing function
of a, while the right-hand side is a constant. Therefore,
as k increases or l decreases, a increases, i.e. X

decreases.
Next we check the terminal condition. lmust decrease

from ðN þ 1Þ=N to 0. When x ¼ 0,

z0 ¼ �gz expðkNzÞ

hold. As long as z40, z(t) monotonically decreases to
converge to zero

d

dt
l ¼ �

N � 1

Nz
þ gl expðkNzÞð1þ kzÞ.

When z is infinitesimally small positive, dl=dt is
infinitely small negative. This shows the terminal
condition lðTÞ ¼ 0 can be satisfied by setting x ¼ 0 for
a finite period of time.
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