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Abstract

We consider the population dynamics of two competing species sharing the same resource, which is mod-
eled by the carrying capacity term of logistic equation. One species (farmer) increases the carrying capacity
in exchange for a decreased survival rate, while the other species (exploiter) does not. As the carrying capac-
ity is shared by both species, farmer is altruistic. The effect of continuous spatial structure on the perfor-
mance of such strategies is studied using the reaction diffusion equations. Mathematical analysis on the
traveling wave solution of the system revealed; (1) Farmers can never expel exploiters in any traveling wave
solution. (2) The expanding velocity of the exploiter population invading the farmer population can be ana-
lytically determined and it depends only on a cost of altruism and the diffusion coefficients while it is
independent of the benefit of altruism. (3) When the effect of altruism is small, the dynamics of the invasion
of exploiters obeys the Fisher-KPP equation. Numerical calculations confirm these results.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Altruistic behavior among unrelated individuals has been widely studied since it cannot be
directly explained by the standard kin-selection theory [1]. Spatial structure has been considered
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as a possible mechanism to explain the evolution of altruistic behavior. Most mathematical stud-
ies assume discrete spatial structure such as a lattice or randomly connected patches [2–6]. Dis-
cretely structured model is advantageous to deal analytically [7,8]. However, the discrete space
and the continuous space are essentially different and many creatures in real biology inhabit con-
tinuous space. Reaction diffusion equation is one of the simplest models describing spatiotempo-
ral dynamics of continuous entity in the continuous space. Individuals are discrete (countable)
entities but their density might be considered as continuous entity if the number of individuals
is large enough.

There are a few studies on the evolution of altruistic behavior in the continuous space [9]. Most
of them study the reaction diffusion equations modeling the competition among players adopting
Tit-For-Tat or All-D strategy in iterated prisoner’s dilemma game [10,11]. They showed that,
when the corresponding non-spatial model has bistable solutions, the spatial model might have
stable coexistence solutions (spatially homogeneous or inhomogeneous). As Tit-For-Tat is a con-
ditional strategy with a memory, it is implicitly assumed that a player can recognize the oppo-
nent’s last behavior. Such a strategy might evolve if the interaction is direct and observable. In
general, however, altruism is not necessarily performed through a direct interaction. In this study
we assume that altruism is performed through the investment to the common resource that is
shared by all players. The situation is referred to as ‘tragedy of commons’ or ‘public goods game’.
Unlike the game played by Tit-For-Tat and All-D, altruistic strategy in public goods games can
never win in the non-spatial model, regardless of the initial frequency. Recently, Brandt et al. [12]
have studied public goods games in the discrete space but there has been no study in the contin-
uous space. We introduce spatial structure so that each individual moves randomly and that the
density distribution obeys a reaction diffusion equation. And we study the performance of the
altruistic strategy.

From the mathematical viewpoint, there are a few studies on game models in the continuous
space [13–15]. Some useful theorems are derived, especially on the traveling wave solutions. In
these models, the local carrying capacity is assumed to be constant and the relative payoff deter-
mines the growth rate of each strategy. In our model, the local carrying capacity itself is a function
of the density of a strategy, which is different from the preceding works that motivated the author
to begin this study.

In this study, we assume two types of strategies (altruistic and non-altruistic) competing in the
continuous space. Population dynamics is modeled by the reaction diffusion equations and the
behavior of the system is studied. Especially, the existence and the velocity of the traveling wave
solutions in which one strategy expels the other are analyzed analytically. The results are con-
firmed by numerical calculations.
2. Model

We start from the standard logistic equation
dx
dt
¼ rx 1� x

K

� �
; ð1Þ
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where K denotes the carrying capacity. We assume two strategies, namely farmer and exploiter.
Farmer increases the carrying capacity in exchange for a decreased survival rate. We assume that
all farmers and exploiters share the increased carrying capacity. Therefore, a farmer strategy can
be regarded as an altruism strategy. The model is denoted by
dx
dt
¼ rx 1� xþ y

KðyÞ

� �
;

dy
dt
¼ ry 1� xþ y

KðyÞ

� �
� cy;

KðyÞ ¼ k0 þ ky;

ð2Þ
where x and y represent the density of exploiters and farmers, respectively. k measures the benefit
of altruism given to both strategies while c measures the cost of altruism. We consider the one-
dimensional continuous spatial structure by introducing the diffusion of both players.
ox
ot
¼ Dx

o2

oX 2
xþ rx 1� xþ y

KðyÞ

� �
;

oy
ot
¼ Dy

o
2

oX 2
y þ ry 1� xþ y

KðyÞ

� �
� cy;

ð3Þ
X denotes the coordinates and Dx and Dy denote the diffusion coefficients of exploiters and farm-
ers, respectively. By the following transformation:
X 0 ¼
ffiffiffiffiffiffi
r
Dx

r
X ; t0 ¼ 1

r
t;

d ¼ Dy

Dx
; c0 ¼ c

r
;

x0 ¼ x
k0

; y 0 ¼ y
k0

; k0 ¼ k
k0

;

ð4Þ
the non-dimensionalized system is denoted by
ox
ot
¼ o

oX 2
xþ x 1� xþ y

1þ ky

� �
;

oy
ot
¼ d

o

oX 2
y þ y 1� xþ y

1þ ky

� �
� cy;

ð5Þ
where only d, c and k are independent parameters. Primes are omitted for convenience. Eqs. (5)
have two spatially homogeneous equilibriums: (x,y) = (1,0) and (x,y) = (0,y*) where
y� ¼ 1� c
1� k þ ck

. ð6Þ
We presuppose d > 0, 0 < k < 1 and 0 < c < 1 in order that y* is always positive and that the model
is biologically realistic. Neglecting the effect on exploiters, the farmer strategy is considered adap-
tive if y* > 1 or k � c � ck > 0. However, without spatial structure, farmers always go to extinc-
tion because the per capita growth rate of exploiters is always larger than that of farmers and
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because there exists the upper bound of the total population (Fig. 1). In order to study the effect of
spatial structure, we consider the case in which exploiters initially inhabit the left half of the space
and farmers the right half (Fig. 2). The populations are in the equilibrium states in both ends,
while competition occurs at the boundary of two populations (hereafter, we call this ‘the front’).
The direction of the motion of ‘the front’ determines which strategy will win the competition. As
long as the reaction term is considered, the per capita growth rate of exploiters is always larger
than that of farmers at any point in the space. However, the equilibrium density of farmers, y*,
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Fig. 1. Phase plane analysis of the dynamics of non-spatial model. Non-dimensionalization denoted by Eq. (4) is
applied. Two lines indicate isoclines of x and y. Filled and open circles indicate stable and unstable equilibriums,
respectively. As the benefit of altruism is increased (larger k), the monomorphism of farmers can maintain larger
population (larger y*). However, this monomorphism is always unstable against invasion of exploiters.
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Fig. 2. The schematic illustration of the farmer-exploiter boundary. Solid and bold lines indicate the density of farmers
and exploiters, respectively. In general, the equilibrium density of farmers is larger than that of exploiters and thus the
disadvantage of farmers in local competition at the boundary area might be compensated by the diffusion from the
high-density area (the right half).
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can be much greater than that of exploiters when c is very small and k nearly equals one. Under
such a condition, the disadvantage of farmers in local competition might be compensated by the
diffusion.
3. Analytic result

A traveling wave solution (TWS) is the solution satisfying
xðX ; tÞ ¼ xðzÞ;
yðX ; tÞ ¼ yðzÞ;
z ¼ X � vt.

ð7Þ
Analysis of a TWS is almost only one analytic tool that is available to study reaction diffusion
system. However, the analysis is difficult in multi-species system. One of the simplest models of
biological competition in the continuous space is a two-species Lotka–Volterra system with diffu-
sion terms. This is equivalent to the present model with a constant carrying capacity (k = 0). Even
in this simplest example, the general existence proof of a TWS (as well as a solution itself) is
unknown. Only in some special cases, the existence and some characteristics of a TWS are proved
[16–19]. Here, we explore the possibility of the existence of a TWS in the present model that is
another special case with density dependent carrying capacity.

If there exists a TWS in Eqs. (5), it satisfies
� v _x ¼ €xþ x 1� xþ y
1þ ky

� �
;

� v _y ¼ d€y þ y 1� xþ y
1þ ky

� �
� cy
or
_x ¼ p;

_p ¼ �vp � x 1� xþ y
1þ ky

� �
;

_y ¼ q;

_q ¼ � v
d

q� y
d

1� xþ y
1þ ky

� �
þ c

d
y;

ð8Þ
where a dot symbol represents the derivative with respect to z. Eq. (8) has two equilibriums:
Px = (1,0,0,0) and Py = (0,0,y*,0). Jacobian matrix around the point (x*,0,y*,0) is
0 1 0 0

A �v B 0

0 0 0 1

C 0 D �v=d

0BBB@
1CCCA;
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where
A ¼ �1þ 2x�

1þ ky�
þ y�

1þ ky�
;

B ¼ x�ð1� kx�Þ
ð1þ ky�Þ2

;

C ¼ y�

dð1þ ky�Þ ;

D ¼ 1

d
c� 1þ x� þ y�

1þ ky�
þ y�ð1� kx�Þ
ð1þ ky�Þ2

 !

and the characteristic equation is
k4 þ ðvþ v=dÞk3 þ ðv2=d � A� DÞk2 � ðA=d þ DÞvkþ AD� BC ¼ 0.
When BC = 0, the equation can be factorized as
ðk2 þ vk� AÞðk2 þ ðv=dÞk� DÞ ¼ 0.
In the neighborhood of Px,
A ¼ 1;

B ¼ 1� k;

C ¼ 0;

D ¼ c
d

and the eigenvalues are
k ¼ �v�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4
p

2
;
�v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4cd
p

2d
;

which means Px is a saddle point. In the neighborhood of Py,
A ¼ �c;

B ¼ 0;

C ¼ 1� c
d

;

D ¼ 1� c
dð1þ ky�Þ
and the eigenvalues are
k�1 ¼
�v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 4c
p

2
;

k�2 ¼
�v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4Dd
p

2d
.
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As c,d,D > 0, Py has a three-dimensional stable manifold and a one-dimensional unstable
manifold.

To proceed further, we introduce the following lemma and definition.

Lemma 1. Let us consider the four-dimensional dynamical system with a hyperbolic fixed point P
(none of the eigenvalues is on the imaginary axis). Assume the hyperplane I = {(x1,x2,x3, x4)jx1 =
x2 = 0} is a two-dimensional invariant manifold of P (if x1 = x2 = 0 holds initially, it holds forever).
Assume the only one of the four eigenvalues of P has a positive real part and the corresponding
eigenvector is tangent to I. Let Wu(P) be the one-dimensional unstable manifold of P. Then, Wu(P) is
a curve on the invariant hyperplane I.

Proof. See Appendix A. h

Definition. A realistic TWS is defined as a heteroclinic orbit connecting Px and Py in the region
x > 0 and y > 0.

Now we can prove the following theorem.

Theorem 1. Eqs. (8) do not have any realistic TWS starting from Py.

Proof. Consider Wu(Py), the one-dimensional unstable manifold of Py. Any orbit which con-
verges to Py as z!�1 must be on Wu(Py). Wu(Py) is tangent to the eigenvector for kþ2 ,
~eþ2 ¼

0

0

1

kþ2

0BBBBB@

1CCCCCA

at Py. On the other hand, the hyperplane I = {(x,p,y,q)jx = p = 0} is a two-dimensional invariant
manifold of Eqs. (8). I is also tangent to~eþ2 at Py. From Lemma 1, Wu(Py) is a curve on the hyper-
plane I. As Px is not on I, Wu(Py) does not contain Px. This completes the proof. h

According to this theorem, farmers cannot expel exploiters in any TWS, regardless of parameter
values. By the next theorem, we obtain the minimum velocity of the TWS. We empirically know
that the TWS of the minimum velocity is most often chosen as a result of a Cauchy problem with
a regular initial condition.

Theorem 2. If Eqs. (8) have a realistic TWS entering Py, the velocity satisfies
v P 2
ffiffiffi
c
p

.

Proof. We argue by contradiction. Assume there exists a realistic TWS with v < 2
ffiffiffi
c
p

. Py has three
eigenvalues whose real parts are negative. k�2 is a negative real and the corresponding eigen-
vector is
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~e�2 ¼

0

0

1

k�2

0BB@
1CCA;
which is tangent to I. k�1 are complex conjugates ðImðk�1 Þ 6¼ 0Þ with negative real parts and the
corresponding eigenvectors are
~e�1 ¼

1
k�1
�C

D� ðv=dÞk� k2

�kC

D� ðv=dÞk� k2

0BBBBBB@

1CCCCCCA;
which have non-zero components in both x- and p-direction. A realistic TWS must be W s
2�ðP yÞ,

the one-dimensional stable manifold of Py that is tangent to ~e�2 at Py. Otherwise, the orbit has
to pass the region x < 0 as it approaches Py. However, as ~e�2 is tangent to I ;W s

2�ðP yÞ is a curve
on I (this might seem almost trivial from Lemma 1 but see Appendix B for proof). Therefore,
W s

2�ðP yÞ does not contain Px. The contradiction completes the proof. h

In addition to these analytic results, we can derive the following conjecture.

Conjecture 1. Assume d = 1. For sufficiently small c and k, the traveling wave solution exists in Eqs.
(5) and it approaches to the solution of
y ¼ y�ð1� xÞ;
ox
ot
¼ ox

oX 2
þ cxð1� xÞ

ð9Þ
as c! 0 and k! 0.

Derivation. See Appendix C.

As the second equation is the Fisher-KPP equation, a TWS exists in Eqs. (9) and the system
will converge to the TWS with the velocity v� ¼ 2

ffiffiffi
c
p

for most regular initial conditions [18].
The conjecture claims that Eqs. (5) is reduced into Eqs. (9).

According to these results, the benefit of altruism (k) has no impact on the final state of the
system. However efficient the altruism is, farmers can never expel exploiters. When k! 1 and
c! 0, y*!1 and the diffusion of farmers from the right half of the space to ‘the front’ is
expected to diverge to the infinity, while the per capita growth rates in local competition differ
only by c. Despite these facts, our result predicts that exploiters will always win. The striking
result derived analytically has some limitations. Theorem 1 does not deny the possibility that
farmers expel exploiters in any form except TWS. Theorem 2 deals only with the minimum velo-
city. Only when c and k are small and d = 1, we have a reasonable conjecture that the PDE system
(Eqs. (5)) develops into a TWS. However, the general PDE problem is difficult to attack. Next, we
perform numerical calculations to check the validity of the analysis.
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4. Numerical result

We performed the numerical calculation of Eqs. (5) in the region 0 6 X 6 L with a zero-flux
boundary condition. L denotes the size of the space and we fix L = 4000. Based on preliminary
calculations as well as the analytical result, the initial condition is set as
Fig. 3
explo
movin
(t = 6
ðx; yÞ ¼

ð1; 0Þ; 0 6 X 6 L=10;

ð0; 0Þ; L=10 < X < L=2;

ð0; y�Þ; L=2 6 X 6 L.

8>><>>:

For all parameters we have tested, a traveling wave is formed in which exploiters expel farmers
(Fig. 3). The dependence of the velocity of the TWS on c and k is studied. When d = 1, the velocity
does not depend on k, as is predicted analytically (Table 1). The dependence on c is quantitatively
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. The profiles of the waves (k = 0.9, c = 0.1, d = 0.25). (a) The propagating waves of farmers (solid) and
iters (bold) approach each other (t = 100) and then collide (t = 160) and form the stable boundary (t = 240)
g right slowly. (b) After some transient time, the stable traveling wave with the constant velocity is formed
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Table 1
The velocity of the TWS in Eqs. (5) as a function of c and k

k c (v*)

0.001 (0.0632) 0.01 (0.2000) 0.1 (0.6325) 0.5 (1.4142) 0.9 (1.8974)

0.01 0.0583 0.1946 0.6274 1.4136 1.9044
0.1 0.0583 0.1946 0.6274 1.4136 1.9044
0.5 0.0583 0.1946 0.6274 1.4137 1.9044
0.9 0.0583 0.1946 0.6274 1.4136 1.9044
0.999 0.0579 0.1946 0.6274 1.4137 1.9044

d = 1.0, v� ¼ 2
ffiffiffi
c
p

. The bold values indicates y* > 1.

Table 2
The velocity of the TWS in Eqs. (5) as a function of d and k

k d

0.01 0.1 1 10 100

0.01 0.6249 0.6260 0.6274 0.6397 0.7933
0.1 0.6249 0.6260 0.6274 0.6395 0.7897
0.5 0.6250 0.6260 0.6274 0.6383 0.7683
0.9 0.6250 0.6261 0.6274 0.6353 0.7251
0.999 0.6251 0.6261 0.6274 0.6353 0.7026

c = 0.1. v* = 0.6325.
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similar to the predicted value. These results hold when d is decreased, while the discrepancy
appears when d is increased (Table 2). Even in the case when c = 0.001 and k = 0.999 (the corre-
sponding y* = 500), the density of farmers reaches y* temporally, but exploiters invade the highly
efficient population of farmers very slowly and finally expel them. The final realization is always
the spatially homogeneous equilibrium state of exploiters, x = 1.

We also have a conjecture that the spatiotemporal dynamics of exploiters will converge to that
of the Fisher-KPP equation. Our conjecture is valid when c and k are small. In this case, a numer-
ical calculation suggests that the conjecture is true (Fig. 4(a)). When k is not small (k = 0.9), the
wave is sharper but still affine congruent to the solution of the corresponding Fisher-KPP equa-
tion (Fig. 4(b)). If d is increased (d = 10), the dynamics behaves quite differently from the Fisher-
KPP equation (Fig. 4(c)).

The reason farmers cannot win is also explained by the following verbal discussion. The (local)
net per capita growth rate is the sum of the reaction term and the second derivative of spatial dis-
tribution. In order to enjoy the diffusion effect, the spatial distribution function must be concave
at a focal point. However, due to the nature of a reaction diffusion equation, exploiters instantly
spread into the whole space regardless of the initial distribution. Since the zero-flux boundary con-
dition is used, the second derivative cannot be concave for the whole space, which means there is a
point where exploiters locally expel farmers. Therefore, farmers cannot expel exploiters in the
form of a TWS. The nature (infinite spreading velocity) is a major defect of the reaction diffusion
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Fig. 4. The comparison between the original model and the Fisher-KPP equation. The solid curve represents the wave
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equation as a model for biological invasions. The defect might be eliminated by introducing the
least viable density e. In this ‘cutoff’ model, when the density is below e, it decreases exponentially.
Formally,



Table 3
The velocity of the TWS in the model with cutoff effect

e c (v*)

0.001 (0.0632) 0.01 (0.2000) 0.1 (0.6325) 0.5 (1.4142) 0.9 (1.8974)

0.0001 0.0534 0.1778 0.5830 1.3216 1.7759
0.001 0.0437 0.1583 0.5459 1.2548 1.6855
0.01 0.0164 0.1094 0.4599 1.1074 1.4875

d = 1.0 and k = 0.999.
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Rxðx; yÞ ¼
x 1� xþ y

1þ ky

� �
ðx > eÞ;

�x ðx 6 eÞ;

8<:
Ryðx; yÞ ¼

y 1� xþ y
1þ ky

� �
� cy ðy > eÞ;

�y ðy 6 eÞ;

8<:

where Rx and Ry are reaction terms of exploiters and farmers, respectively. The numerical result
of the model shows that the cutoff effect decrease the invading velocity of exploiters, however,
farmers still cannot win for all parameters we have tested (Table 3).
5. Discussion

We show that the emergence of altruism is impossible in the present model framework. We ana-
lytically show that farmers can never expel exploiters in any form of a TWS. Numerical simulation
of the reaction diffusion equations shows that exploiters always win. This result is in marked con-
trast to many studies showing that spatial structure promotes the evolution of cooperative behav-
ior. The discrepancy comes from the essential difference of model, i.e. discrete and continuous
spatial structure. Discrete space model is easier to deal with and might be more appropriate for
some biological phenomena than continuous space model. However, space is essentially continu-
ous and continuous space model has more applications to the real biological world. If continuous
space does not promote the evolution of altruism at all, we must reconsider the effect of spatial
structure on the evolution of altruism.

What difference between continuous and discrete space brought the present result? There are
many studies on the evolution of altruistic behavior in the population with local interaction
and local dispersal (viscous population). Among them, the studies on lattice population using
inclusive fitness theory [4,7] may be a clue to the question. Based on the Hamilton’s rule, related-
ness must be positive for altruism to evolve. In this case, relatedness represents the fact that altru-
istic individual more likely interacts with altruistic individuals than population average in viscous
population. In the lattice models, relatedness is generally positive because the size of local popu-
lation (patch) is finite. On the other hand, in reaction diffusion models, individuals are represented
by density, that is continuous. Thus, relatedness of local population might be always zero,
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although we do not know any formal definition of relatedness in general reaction diffusion
models. This might be the reason why the emergence of altruistic behavior is not promoted in
the continuous space.

From the mathematical point of view, we provide the non-existence proof of a TWS in which
farmers win. We numerically expect the existence of a TWS in which exploiters win. When k = 0,
our model falls into a category of the diffusive Lotka–Volterra competition model that has been
intensively studied. For example, Hosono [18] shows that the velocity becomes an increasing func-
tion of Dy (or d in non-dimensionalized model) for sufficiently large d. This agrees with our
numerical result (Table 2) although the present model is not a Lotka–Volterra type. In a realistic
situation d = O(1) the velocity does not depend on d, which motivated the analysis of the special
case d = 0 of the diffusive Lotka–Volterra models. The existence of a TWS in the corresponding
three-dimensional phase space is proved by Hosono [17]. We showed that our model might be
reduced to the two-dimensional when d = 1, but considering the case d = 0 of our case might
be another way to approach the existence proof.

This study does not positively contribute to the understanding of the evolution of altruistic
behavior. Our result suggests that any effort with cost to increase the shared carrying capacity
is maladaptive, however efficient it is. One possible explanation for the evolution of altruistic
behavior in the continuous space is that the common resource is not allocated evenly. If (for some
biological reasons) farmers have the priority to use the addition of the common resource by them,
they might be able to resist the invasion of exploiters. This situation might be denoted by the time
delay in carry capacity term of exploiters. The author is currently working on this type of model.
Although altruism does not spread in the present model, we hope that our analysis will contribute
to the understanding of the evolution of altruism in public goods games in the continuous space.
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Appendix A

Proof of Lemma 1. We consider the four-dimensional dynamical system satisfying
_x ¼ f ðxÞ; ðA1Þ
f ð0Þ ¼ 0; ðA2Þ

8x3; x4;

f1ð0; 0; x3; x4Þ ¼ 0;

f2ð0; 0; x3; x4Þ ¼ 0;

ðA3Þ
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(A3) means the hyperplane I = {(x1,x2,x3,x4)jx1 = x2 = 0} is an invariant manifold of O. Jaco-
bian matrix of (A1) around O is generally denoted by
J ¼
A 0

C B

� �
;

where A, B and C are 2 · 2 square matrices. With proper base transformations in a x1 � x2 sub-
space and a x3 � x4 subspace, A and B can be taken as Jordan canonical forms without loss of
generality. Thus, we assume
J ¼

k1 0 0 0

a k2 0 0

c1 c3 k3 0

c2 c4 b k4

0BBB@
1CCCA; ðA4Þ
where ki are eigenvalues. We also assume
Reðk4Þ > 0 and Reðk1Þ;Reðk2Þ;Reðk3Þ < 0. ðA5Þ
This means that the unstable eigenvector is tangent to I. Here we prove the global unstable
manifold of O, Wu(O), is contained by I.

Let W u
locðOÞ be the local unstable manifold of O. Let z � x4 then stable manifold theorem

ensures that W u
locðOÞ is a curve (x1,x2,x3) = u(z) where Du(0) = (0,0,0). The following must be

the identity equation of z;
f4ðu1ðzÞ;u2ðzÞ;u3ðzÞ; zÞ � u0ðzÞ ¼ fiðu1ðzÞ;u2ðzÞ;u3ðzÞ; zÞ; ðA6Þ

where i = 1,2,3. Substituting a Taylor expansion ui(z) = aijz

j + O(zj+1) (j P 2) into a Taylor
expansion of f4 around O, the left hand side of (A6) becomes
X3

k¼1

of4

oxk

����
O

ukðzÞ
� �

þ of4

ox4

����
O

zþOðz2Þ
" #

ðjaijz
j�1 þOðzjÞÞ ¼ jaijk4zj þOðZjþ1Þ.
Similarly, for i = 1, the right hand side of (A6) becomes
X3

k¼1

of1

oxk

����
O

ukðzÞ
� �

þ of1

ox4

����
O

zþ 1

2

o2f1

ox2
4

����
O

z2 þ � � � ¼ k1a1jzj þOðZjþ1Þ
because of1

oxk

���
O
¼ 0 for k = 2,3,4 form (A4) and because olfi

oxl
4

���
O
¼ 0 for i = 1,2 from (A3). Comparing

the coefficients, we obtain
k1 ¼ jk4 or a1j ¼ 0.
From (A5), the former condition is impossible and we obtain
a1j ¼ 0.
For i = 2, (A6) becomes
ja2jk4zj ¼ aa1jzj þ a2jk2zj þOðz3Þ
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and we obtain a2j = 0. Therefore, we obtain
uiðzÞ ¼ 0
for i = 1,2. Thus, W u
locðOÞ is a curve on the hyperplane I. As Wu(O) is the extension of W u

locðOÞ and
I is invariant, Wu(O) is a curve on I. This completes the proof. h
Appendix B

Proof. We consider the same dynamical system denoted by (A1)–(A5). In addition, we assume
that k1 and k2 are complex (corresponding to k�1 in the text) and that k3 and k4 are real
(corresponding to k�2 in the text), formally,
ImðkiÞ 6¼ 0 for i ¼ 1; 2;

ImðkiÞ ¼ 0 for i ¼ 3; 4.
ðB1Þ
Let W s
2�ðOÞ be the one-dimensional stable manifold of O that is tangent to~e�2 at O. Here we prove

W s
2�ðOÞ is contained by I.

Let z � x3 and W s2�
loc ðOÞ be W s2� ðOÞ in the neighborhood of O. Then W s2�

loc ðOÞ is a curve
(x1,x2,x4) = u(z) where Du(0) = (0,0,0). The following must be the identity equation of z:
f3ðu1ðzÞ;u2ðzÞ; z;u4ðzÞÞ � u0iðzÞ ¼ fiðu1ðzÞ;u2ðzÞ; z;u4ðzÞÞ; ðB2Þ

where i = 1,2,4. Substituting a Taylor expansion ui(z) = aijz

j + O(zj+1) (j P 2), we obtain
ja1jk3 ¼ a1jk1
and
ja2jk3 ¼ aa1j þ a2jk2.
From (B1), neither k1 = jk3 nor k2 = jk3 is possible. Thus, we obtain
uiðzÞ ¼ 0
for i = 1,2 and W s2�
loc ðOÞ is a curve on the hyperplane I. As W s2� ðOÞ is the extension of W s2�

loc ðOÞ and
I is invariant, W s2� ðOÞ is a curve on I. This completes the proof. h
Appendix C

Derivation of Conjecture 1. Here we show that our model reduces to a Fisher-KPP equation if we
neglect the second and higher order terms of c and k. The central idea is that the quantity
xþ y
y�

ðC1Þ
will remain one at all points on the orbit when the difference between the property of farmers and
that of exploiters is very small, i.e. c,k� 1. Based on the idea, we apply the following
transformation:
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m ¼ xþ y
y�
� 1;

n ¼ p þ q
y�
;

u ¼ x� y
y�
;

w ¼ p � q
y�

.

ðC2Þ
We expect that m = n = 0 is an invariant manifold of both Px and Py. If this is true, the system can
be reduced into the two-dimensional dynamics on the manifold. Eqs. (8) can be rewritten by the
new four parameters using
x ¼ 1þ mþ u
2

;

y ¼ 1þ m� u
2

y�;

p ¼ nþ w
2

;

q ¼ n� w
2

y�.

ðC3Þ
Substituting Eqs. (A3) into Eqs. (8) yields complicated equations. However, linearization around
c = k = 0 becomes rather simple. To the first order of c and k, we obtain
_u ¼ w;

_w ¼ � v
2

Jw� v
2

Knþ c
4

Ju2 � c
4

J þOðmÞ;

_m ¼ n;

_n ¼ � v
2

Jn� v
2

Kwþ c
4

Ku2 � c
4

K þOðmÞ;

J ¼ 1þ 1

d
;

k ¼ 1� 1

d
;

ðC4Þ
where O(m) represent the terms including m, which vanish when m = 0. Unfortunately, m = n = 0
is not invariant in general. However, in the special case K ¼ 0 () d ¼ 1, the equations become
simpler
_u ¼ w;

_w ¼ �vwþ c
2

u2 � c
2
þOðmÞ;

_m ¼ n;

_n ¼ �vnþOðmÞ

ðC40Þ
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and m = n = 0 becomes invariant. Hereafter, we assume d = 1. The reduced two-dimensional
system is
_u ¼ w;

_w ¼ �vwþ c
2
ðu� 1Þðuþ 1Þ.

ðC5Þ
The realistic TWS of Eqs. (8) corresponds to the orbit of Eqs. (A5) starting (u,w) = (1,0) and
entering (�1,0) in the region �1 < u < 1. Applying the transformation,
eu ¼ uþ 1

2
;

ew ¼ w
2
;

ðC6Þ
Eqs. (A5) become
_eu ¼ ew;
_ew ¼ �vew � ceuð1� euÞ; ðC7Þ
which is exactly the ODE governing a TWS in the Fisher-KPP equation
oeu
ot
¼ o2eu

oX 2
þ ceuð1� euÞ; ðC8Þ
with the wave velocity v. We obtain Eq. (9) because eu ¼ x if m = 0. The existence of a realistic
TWS in Eq. (B2) had been already proved for v P 2

ffiffiffi
c
p

[19]. Thus, a realistic TWS exists in
Eqs. (C4 0). The stability and the convergence to the TWS of the minimum velocity are also proved
for the Fisher-KPP equation. To check these in our case, we rewrite Eqs. (5) as
ou
ot
¼ ou

oX 2
� c

2
ðu� 1Þðuþ 1Þ þOðmÞ;

om
ot
¼ om

oX 2
� m 1� cþ k

2
ð1� uÞ

� �
þOðm2Þ;

ðC9Þ
where we used d = 1 and neglected the second and higher order terms of c and k. Apparently,
m = 0 is invariant and we obtain
ou
ot
¼ ou

oX 2
� c

2
ðu� 1Þðuþ 1Þ; ðC10Þ
which is essentially identical to the Fisher-KPP equation. Therefore, the stability and the conver-
gence to the TWS for v ¼ 2

ffiffiffi
c
p

may also hold in our case.
The above argument proves that Eqs. (5) reduces to a Fisher-KPP equation and have the same

property (existence and stability of a TWS) if we neglect all the second and higher order terms of c
and k. Actually, Eqs. (8) converges to Eqs. (C4 0) as c! 0 and k! 0. Unfortunately, however, the
existence of a TWS in Eqs. (C4 0) does not in general ensure the existence of a TWS in Eqs. (8). We
could only show that there is an orbit in Eqs. (8) connecting Px and P such that P! Py. However,
as we have seen, our system is closely related to Fisher-KPP equation although they look very
different.



J.Y. Wakano / Mathematical Biosciences 201 (2006) 72–89 89
References

[1] W.D. Hamilton, The genetical evolution of social behaviour I and II, J. Theor. Biol. 7 (1964) 1.
[2] M. Nakamaru, H. Matsuda, Y. Iwasa, The evolution of cooperation in a lattice-structured population, J. Theor.

Biol. 184 (1997) 65.
[3] M. Nakamaru, H. Nogami, Y. Iwasa, Score-dependent fertility model for the evolution of cooperation in a lattice,

J. Theor. Biol. 194 (1998) 101.
[4] P.D. Taylor, A.J. Irwin, Overlapping generations can promote altruistic behaviour, Evolution 54 (2000) 1135.
[5] C. Hauert, S.D. Monte, J. Hofbauer, K. Sigmund, Volunteering as red queen mechanism for cooperation in public

goods games, Science 296 (2002) 1129.
[6] C. Hauert, M. Doebeli, Spatial structure often inhibits the evolution of cooperation in the snowdrift game, Nature

428 (2004) 643.
[7] A.J. Irwin, P.D. Talyor, Evolution of altruism in stepping-stone populations with overlapping generations, Theor.

Popul. Biol. 60 (2001) 315.
[8] J.F. Le Galliard, R. Ferriere, U. Dieckmann, The adaptive dynamics of altruism in spatially heterogeneous

populations, Evolution 57 (2003) 1.
[9] M. Nakamaru, Y. Iwasa, Competition by allelopathy proceeds in traveling waves: colicin-immune strain aids

colicin-sensitive strain, Theor. Popul. Biol. 57 (2000) 131.
[10] R. Ferriere, R.E. Michod, Invading wave of cooperation in a spatial iterated prisoner’s dilemma, Proc. Roy. Soc.

Lond. B 259 (1995) 77.
[11] V.C.L. Hutson, G.T. Vickers, The spatial struggle of tit-for-tat and defect, Philos. Trans. Roy. Soc. Lond. B 348

(1995) 393.
[12] H. Brandt, C. Hauert, K. Sigmund, Punishment and reputation in spatial public goods games, Proc. Roy. Soc.

Lond. B 270 (2003) 1099.
[13] V.C.L. Hutson, G.T. Vickers, Travelling waves and dominance of ESS’s, J. Math. Biol. 30 (1992) 457.
[14] G.T. Vickers, V.C.L. Hutson, C.J. Budd, Spatial patterns in population conflicts, J. Math. Biol. 31 (1993) 411.
[15] J. Hofbauer, V. Hutson, G.T. Vickers, Travelling waves for games in economics and biology, Nonlinear Anal. 30

(1997) 1235.
[16] S.R. Dunbar, Traveling wave solutions of diffusive Lotka–Volterra equations: a heteroclinic connection in R4,

Trans. Am. Math. Soc. 268 (1984) 557.
[17] Y. Hosono, Traveling waves for a diffusive Lotka–Volterra competition model II: a geometric approach, Forma 10

(1995) 235.
[18] Y. Hosono, The minimal speed of traveling fronts for a diffusive Lotka–Volterra competition model, Bull. Math.

Biol. 60 (1998) 435.
[19] J.D. Murray, Mathematical Biology, Springer, New York, 1989.


	A mathematical analysis on public goods games in the continuous space
	Introduction
	Model
	Analytic result
	Numerical result
	Discussion
	Acknowledgments
	Appendix A
	Appendix B
	Appendix C
	References


