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Abstract

Based on a population genetic model of mixed strategies determined by alleles of small effect, we derive conditions for the evolution of

social learning in an infinite-state environment that changes periodically over time. Each mixed strategy is defined by the probabilities

that an organism will commit itself to individual learning, social learning, or innate behavior. We identify the convergent stable strategies

(CSS) by a numerical adaptive dynamics method and then check the evolutionary stability (ESS) of these strategies. A strategy that is

simultaneously a CSS and an ESS is called an attractive ESS (AESS). For certain parameter sets, a bifurcation diagram shows that the

pure individual learning strategy is the unique AESS for short periods of environmental change, a mixed learning strategy is the unique

AESS for intermediate periods, and a mixed learning strategy (with a relatively large social learning component) and the pure innate

strategy are both AESS’s for long periods. This result entails that, once social learning emerges during a transient era of intermediate

environmental periodicity, a subsequent elongation of the period may result in the intensification of social learning, rather than a return

to innate behavior.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The behavior of a biological organism in a particular
environment—more specifically, in response to a fitness-
related aspect of the environment—is a complex process
involving the expression of relevant information possessed
by that organism. At the risk of oversimplification (Gould
and Marler, 1987), it is possible to classify behaviors in
terms of the three distinct ways in which this information
can be obtained (Cavalli-Sforza and Feldman, 1983; Boyd
and Richerson, 1985; Laland et al., 2000; Henrich and
McElreath, 2003; Alvard, 2003). This trichotomous classi-
fication labels behavior as ‘‘innate,’’ ‘‘socially learned,’’ or
‘‘individually learned’’.

A behavior is innate when it entails the direct expression
of information encoded in the genes, which are inherited
from the parents via the germ cells. Social learning denotes
the transfer of information between socially interacting
e front matter r 2006 Elsevier Inc. All rights reserved.
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organisms, as a result of which the behavior exhibited by
the ‘‘exemplar’’ is adopted by the ‘‘observer’’ (Galef, 1988;
Whiten and Ham, 1992; Heyes, 1993). (We prefer the term
exemplar to ‘‘model’’, which can be confused with
mathematical model, and ‘‘demonstrator’’, which implies
active teaching.) The rubric covers teaching, imitation,
local enhancement, and various other psychological
processes. Finally, individual learning refers to learning
that occurs independently of any social influences. Exam-
ples are trial-and-error and insight.
Reviews of the factors contributing to the emergence of

social learning emphasize the role played by a temporally
changing environment (Laland et al., 2000; Richerson and
Boyd, 2000; Henrich and McElreath, 2003; Alvard, 2003).
These writers agree that individual learning, social learning
(from the parental generation), and innate determination
of behavior are favored by natural selection when
environmental changes occur at short, intermediate, and
long generation intervals, respectively. Theoretical studies
by Boyd and Richerson (1985, 1988), Rogers (1988), and
Feldman et al. (1996) have provided the motivation, and
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also some support, for this proposal. More recently,
Wakano et al. (2004) and Aoki et al. (2005) rigorously
showed that this consensus view is basically true for both
periodically and randomly changing environments, by
simultaneously comparing individual learners, social lear-
ners, and ‘‘innates’’ (organisms behaving innately) when
they are in direct competition with each other.

Wakano et al. (2004) and Aoki et al. (2005) posited
genetic variation at a tri-allelic ‘‘strategy’’ locus, which
determines whether an organism is an individual learner, a
social learner, or an innate. In other words, they assumed
that the three strategies are obligate (also Rogers, 1988;
Feldman et al., 1996). Clearly, a model recognizing the
‘‘facultative’’ nature of behavior is more realistic (Boyd
and Richerson, 1985, 1988; Feldman et al., 1996; Henrich
and Boyd, 1998; Kameda and Nakanishi, 2002). In the
present paper, we propose a new model approximating this
feature, which is an extension of the mixed strategy model
of Feldman et al. (1996). The mixed strategy model
assumes alleles of small effect instead of major genes.

Since we view evolution as proceeding gradually by the
cumulative substitution of mutations of small effect, our
interest centers on strategies that are simultaneously
convergent stable (CSS) and evolutionarily stable (ESS).
CSS and ESS are not equivalent concepts (Britton, 2003;
Doebeli et al., 2004): an ESS that is not a CSS cannot be
reached by the cumulative substitution of mutations of
small effect; a CSS that is not an ESS can be reached, but is
invadable by another strategy. Hence, we restrict our
attention to attractive ESS’s (AESS), which are defined to
be strategies that are simultaneously an ESS and a CSS.
We use a numerical adaptive dynamics method to identify
the CCS (Geritz et al., 1997). Then, we apply analytically
derived conditions to check that these strategies are also
evolutionarily stable (Maynard Smith, 1982).

Many of our results are consistent with those obtained
by Wakano et al. (2004) and Aoki et al. (2005), which gives
us some confidence that they do indeed apply to the
phenomenon being investigated, rather than being depen-
dent on the model. However, some of our predictions are
novel. For example, we find that a mixed social and
individual learning strategy, once it emerges during an era
of intermediate environmental stability, may be able to
resist invasion by the pure innate strategy, even if an era of
high environmental stability should ensue.

2. Description of the model

Feldman et al. (1996) assume an infinite population of
haploid asexual organisms that can use a mixed strategy of
individual and social learning. We extend their model to
include innate behavior as an alternative. During develop-
ment each organism commits itself to one of these three
pure strategies. The ‘‘strategy’’ locus, with alleles A and a,
determines the probabilities that behavior will be innate,
individually learned, or socially learned. An organism
carrying an A allele becomes an ‘‘innate’’ (i.e., an organism
behaving innately) with probability 1�K�L, an individual
learner with probability L, and a social learner with
probability K. For allele a, we substitute Lþ dL for L and
K þ dK for K. Here, dL and dK denote independent
changes of probability (except on the boundaries of the
parameter space of K and L as explained below).
The environment changes every l generations. In other

words, one postchange generation experiences a different
environmental state from the previous generation, and l�1
subsequent generations experience the same environmental
state as that postchange generation. Larger values of l imply
more environmental stability. We adopt the infinite environ-
mental state model, which posits that when the environment
changes it never reverts to an earlier state (Feldman et al.,
1996; Wakano el al., 2004; Aoki et al., 2005).
Behavior may be adaptive (correct) or maladaptive

(wrong). Individual learners always achieve a correct
behavior on their own whatever the environmental state,
whereas social learners and innates may get it wrong. A
social learner acquires its behavior by copying a random
organism of the previous generation (oblique transmission,
Cavalli-Sforza and Feldman, 1981). Its behavior will be
adaptive or maladaptive depending on whether the
behavior it acquires is appropriate to its current environ-
mental state. In particular, the infinite environmental state
model implies that a social learner of the postchange
generation has no suitable exemplars in the prechange
generation from which to acquire a correct behavior (see
also next paragraph).
The information needed for innate behavior is stored

genetically at the ‘‘innate information’’ locus, with two
classes of alleles M and m. If an innate carries an M allele,
its behavior is adaptive. Carrying an m allele results in
maladaptive behavior. Each of the two classes of alleles
comprises many selectively neutral variants, which are
being constantly generated by mutation. (However, we do
not model the mutation process.) Hence, there may be a
variety of adaptive behaviors, which by assumption are
equally adaptive (i.e., have the same fitness), and similarly
a variety of maladaptive behaviors. A small subset
amounting to a fraction r of each class has the special
property of being adaptive when the environment changes.
(Parameter r is analogous to a mutation rate, and we are
following standard practice in population genetics when we
assume it to be a constant.) These variants can be regarded
as ‘‘preadapted’’ alleles awaiting environmental change.
Nevertheless, an innate carrying a preadapted allele
behaves differently in the prechange and postchange
generations—the behavior of an innate is the result of an
interaction between the allele it carries and the environ-
ment it experiences—so that its behavior in the prechange
generation would be maladaptive in the postchange
generation. The innate information locus is not expressed
when the individual or social learning strategy is adopted.
These assumptions may strike the reader as arbitrary, but
in fact are necessary if we are to write down a consistent
and analytically tractable recursion model.
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Table 2

Notation for the frequencies of the eight phenogenotypes

Phenogenotype Frequency

Genotype Behavior

AM Correct u

AM Wrong ū

Am Correct v

Am Wrong v̄

aM Correct x

aM Wrong x̄

am Correct y

am Wrong ȳ
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Let us illustrate what we mean by a preadapted allele
with two textbook examples from human genetics. An
allele in our haploid asexual organism corresponds, albeit
imperfectly, to a genotype in diploid sexual humans. The
hemoglobin S allele is recessive to the A allele in a malaria-
free environment, so that the fitnesses of genotypes AA and
AS are identical (and greater than the fitness of genotype
SS). If the population is exposed to malaria, however,
genotype AS now has a higher fitness than genotype AA

due to overdominance. Hence, in so far as the allele S is
present at a low frequency before malaria becomes a
selective factor, it can be regarded as a preadapted allele.
Our second example is adult lactose absorber, which shows
that the behavior associated with a genetic trait may
depend on the environment in a way that affects fitness. In
the incipient stage of animal domestication, the amount of
milk available to an absorber is likely small and not
sufficient to make a difference in fitness. As domestication
proceeds and milk becomes more abundant, an absorber
who persists in limiting intake is behaving maladaptively
compared to one who increases consumption.

The fitnesses are relative viabilities and are assigned in
the following way. There is a baseline fitness of 1 for
adaptive behavior. Maladaptive behavior causes the fitness
to be reduced by s. Social learners bear a direct cost of
developing and maintaining a nervous system supportive of
learning, which is translated into a fitness loss d. Individual
learners suffer a similar—though not necessarily equiva-
lent—direct cost and are also adversely affected by
mistakes made before the mature behavior is realized; the
total penalty is c. The fitnesses associated with each of the
three strategies when the behavior is correct or wrong are
summarized in Table 1. We assume 0odocosod+so1
(Aoki et al., 2005).

There are four genotypes AM, Am, aM, and am, each of
which may express either of two phenotypes, i.e., adaptive
or maladaptive behavior. The frequencies of the eight
phenogenotypes (genotype–phenotype combinations, Feld-
man and Cavalli-Sforza, 1984) are listed in Table 2. The life
cycle events are asexual reproduction, learning, and natural
selection in that order. The recursions relating the
frequencies of the eight phenogenotypes in the offspring
generation (with primes) to those in the parental generation
(without primes) can be written as follows.
Table 1

Strategy/behavior combinations with associated fitnesses

Strategy/behavior Fitness

Innate/correct 1

Innate/wrong 1�s

Social learning/correct 1�d

Social learning/wrong 1�d�s

Individual learning/correct 1�c

0odocosod+so1.
First, when the environment changes between genera-
tions they are:

Vu0 ¼ ðuþ ūþ vþ v̄Þr½1� K � Lþ Lð1� cÞ�,

Vū0 ¼ ðuþ ūþ vþ v̄ÞrKð1� d � sÞ,

Vv0 ¼ ðuþ ūþ vþ v̄Þð1� rÞLð1� cÞ,

Vv̄0 ¼ ðuþ ūþ vþ v̄Þð1� rÞ½ð1� K � LÞ

� ð1� sÞ þ Kð1� d � sÞ�,

Vx0 ¼ ðxþ x̄þ yþ ȳÞr½1� K � dK

� L� dLþ ðLþ dLÞð1� cÞ�,

Vx̄0 ¼ ðxþ x̄þ yþ ȳÞrðK þ dKÞð1� d � sÞ,

Vy0 ¼ ðxþ x̄þ yþ ȳÞð1� rÞðLþ dLÞð1� cÞ,

Vȳ0 ¼ ðxþ x̄þ yþ ȳÞð1� rÞ½ð1� K � dK � L� dLÞ

� ð1� sÞ þ ðK þ dKÞð1� d � sÞ�. ð1Þ

Second, when the environment remains constant be-
tween generations they are:

Wu0 ¼ ðuþ ūÞ½1� K � Lþ Lð1� cÞ

þ Kðuþ vþ xþ yÞð1� dÞ�,

Wū0 ¼ ðuþ ūÞKðūþ v̄þ x̄þ ȳÞð1� d � sÞ,

Wv0 ¼ ðvþ v̄Þ½Lð1� cÞ þ Kðuþ vþ xþ yÞð1� dÞ�,

Wv̄0 ¼ ðvþ v̄Þ½ð1� K � LÞð1� sÞ

þ Kðūþ v̄þ x̄þ ȳÞð1� d � sÞ�,

Wx0 ¼ ðxþ x̄Þ½1� K � dK � L� dLþ ðLþ dLÞ

�ð1� cÞ þ ðK þ dKÞðuþ vþ xþ yÞð1� dÞ�,

Wx̄0 ¼ ðxþ x̄ÞðK þ dKÞðūþ v̄þ x̄þ ȳÞð1� d � sÞ,

Wy0 ¼ ðyþ ȳÞ½ðLþ dLÞð1� cÞ

þ ðK þ dKÞðuþ vþ xþ yÞð1� dÞ�,

Wȳ0 ¼ ðyþ ȳÞ½ð1� K � dK � L� dLÞð1� sÞ

þ ðK þ dKÞðūþ v̄þ x̄þ ȳÞð1� d � sÞ�. ð2Þ

The quantities V and W in (1) and (2) are the mean
fitnesses that normalize the equations. Their explicit forms
are not given, but can be obtained by summing the right-
hand sides. Corresponding to the environmental periodi-
city of l, one set of iterations entails one application of (1)
followed by l�1 applications of (2).
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We now explain the derivation of these recursions, which
are a direct extension of (20) and (21) of Feldman et al.
(1996). First, we note that the first four lines of (1) and (2)
describe changes in the frequencies of genotypes AM and
Am, which have the A allele at the strategy locus, while the
last four lines describe changes in the frequencies of
genotypes aM and am, which have the a allele. Since the
derivation of the last four lines is identical to that of the
first four lines except for the substitution of Lþ dL for L

and K þ dK for K, the argument will not be repeated.
The recursions with stasis (2) are easier to explain, so we

will deal with them first. Since reproduction is asexual, each
offspring is genetically identical to its parent. Hence the
frequencies of the genotypes AM and Am among newborns
are uþ ū and vþ v̄, respectively. Since these genotypes
have the A allele at the strategy locus, innate behavior,
individual learning, and social learning occur with prob-
abilities 1�K�L, L, and K, respectively. When the innate
strategy is adopted, the behavior of genotype AM is
adaptive since it has an M allele at the innate information
locus (fitness equals 1, first line), whereas the behavior of
genotype Am is maladaptive since it has an m allele (fitness
equals 1�s, fourth line). With individual learning, behavior
is always adaptive (fitness equals 1�c, first and third lines).
Socially learned behavior is adaptive if an adaptively
behaving member of the previous generation, whose
frequency is uþ vþ xþ y, is copied (fitness equals 1�d,
first and third lines), and maladaptive if a maladaptively
behaving member, whose frequency is ūþ v̄þ x̄þ ȳ, is
copied (fitness equals 1�d�s, second and fourth lines).

The recursions with environmental change (1) can be
obtained by modifying the above argument. Among the
newborns of the postchange generation the frequencies of
genotypes AM and Am are rðuþ ūþ vþ v̄Þ and
ð1� rÞðuþ ūþ vþ v̄Þ, respectively. Using the innate strat-
egy, behavior is adaptive for genotype AM (first line), but
maladaptive for genotype Am (fourth recursion). All
individual learners behave adaptively (first and third lines),
and all social learners behave maladaptively (second and
fourth lines).

3. Analysis

Recall that the A and a alleles at the strategy locus
determine two strategies that differ in the probabilities that
behavior is innate, individually learned, or socially learned.
These differences are expressed in terms of the parameters
dL and dK. Our purpose in Sections 3–5 is to obtain the
conditions for local stability of a monomorphism in the
‘‘wild type’’ allele A to invasion by the ‘‘mutant’’ allele a. In
particular, if this genetic monomorphism is locally stable
for all combinations of dL and dK, then by definition it
corresponds to an ESS (Maynard Smith, 1982). We focus
on the case of small dL and dK in this paper.

First, when the population is monomorphic for allele A,
there exists a globally stable equilibrium solution of period
l (Appendix A). Next, as shown in Appendix B, the
dominant eigenvalue determining the local stability to
invasion by allele a is

l ¼ a
Yl�1
i¼1

gðiÞ þ b
Yl�1
i¼1

xðiÞ, (3a)

where

a ¼ r
V̂ þ ð1� K � LÞð1� rÞs

V̂

� 1�
cdLþ ðd þ sÞdK

V̂ þ ð1� K � LÞð1� rÞs

� �
,

b ¼ ð1� rÞ
V̂ � ð1� K � LÞrs

V̂

� 1þ
ðs� cÞdL� ddK

V̂ � ð1� K � LÞrs

� �
,

gðiÞ ¼
W ðiÞ þ ð1� K � LÞðv̂ðiÞ þ ^̄v

ðiÞ
Þs

Ŵ
ðiÞ

� 1�
cdLþ ½d þ ðūðiÞ þ ^̄v

ðiÞ
Þs�dK

W ðiÞ þ ð1� K � LÞðv̂ðiÞ þ ^̄v
ðiÞ
Þs

( )
,

xðiÞ ¼
Ŵ
ðiÞ
� ð1� K � LÞðûðiÞ þ ^̄u

ðiÞ
Þs

Ŵ
ðiÞ

� 1þ
ðs� cÞdL� ½d � ðûðiÞ þ v̂ðiÞÞs�dK

Ŵ
ðiÞ
� ð1� K � LÞðûðiÞ þ ^̄u

ðiÞ
Þs

( )
. ð3bÞ

Superscript i in (3) denotes the number of generations
that have elapsed since an environmental change and the
hat indicates monomorphic equilibrium. When lj jo1, the
periodic solution for the monomorphism in allele A (see
(A.1), (A.2) of Appendix A) is locally stable to invasion by
allele a.
For small dL and dK we approximate (3) by

l � 1þ CLdLþ CKdK , (4a)

where

CL ¼
r½V̂ þ ð1� K � LÞð1� rÞs�

V̂

(

�
Yl�1
i¼1

Ŵ
ðiÞ
þ ð1� K � LÞðv̂ðiÞ þ ^̄v

ðiÞ
Þs

Ŵ
ðiÞ

)

� �
c

V̂ þ ð1� K � LÞð1� rÞs

�

�
Xl�1
i¼1

c

Ŵ
ðiÞ
þ ð1� K � LÞðv̂ðiÞ þ ^̄v

ðiÞ
Þs

)

þ
ð1� rÞ½V̂ � ð1� K � LÞrs�

V̂

(

�
Yl�1
i¼1

Ŵ
ðiÞ
� ð1� K � LÞðûðiÞ þ ^̄u

ðiÞ
Þs

Ŵ
ðiÞ

)
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�
s� c

V̂ � ð1� K � LÞrs

�

þ
Xl�1
i¼1

s� c

Ŵ
ðiÞ
� ð1� K � LÞðûðiÞ þ ^̄u

ðiÞ
Þs

)
, ð4bÞ

CK ¼
r½V̂ þ ð1� K � LÞð1� rÞs�

V̂

(

�
Yl�1
i¼1

Ŵ
ðiÞ
þ ð1� K � LÞðv̂ðiÞ þ ^̄v

ðiÞ
Þs

Ŵ
ðiÞ

)

� �
d þ s

V̂ þ ð1� K � LÞð1� rÞs

�

�
Xl�1
i¼1

d þ ð ^̄u
ðiÞ
þ ^̄v
ðiÞ
Þs

Ŵ
ðiÞ
þ ð1� K � LÞðv̂ðiÞ þ ^̄v

ðiÞ
Þs

)

þ
ð1� rÞ½V̂ � ð1� K � LÞrs�

V̂

(

�
Yl�1
i¼1

Ŵ
ðiÞ
� ð1� K � LÞðûðiÞ þ ^̄u

ðiÞ
Þs

Ŵ
ðiÞ

)

� �
d

V̂ � ð1� K � LÞrs

�

�
Xl�1
i¼1

d � ðûðiÞ þ v̂ðiÞÞs

Ŵ
ðiÞ
� ð1� K � LÞðûðiÞ þ ^̄u

ðiÞ
Þs

)
. ð4cÞ
4. Special case of K ¼ L ¼ 0

When allele A defines a strategy of pure innate behavior,
(A.1), (A.2) of Appendix A can be explicitly solved to yield
the periodic solution shown in Appendix C.

If r� ð1� sÞl holds, we have from (4) to leading order
in r:

l � 1þ
l

1� s
½ðs� cÞdL� ddK � (5)

(Appendix D). Since s4c and d40, we observe that
l41 only if dL40. In other words, a small amount of
social learning in isolation (dL ¼ 0, dK40) confers
no advantage over the pure innate strategy (since
CK ¼ �

ld
1�s

o0), so that a successful mutant allele a must
have an individual learning component (dL40).

In fact, we can show that CKo0 is true in general
(Appendix E). Hence, a necessary condition for instability
is CL40. From (4b)

V̂
Yl�1
i¼1

Ŵ
ðiÞ
� CL ¼ l½�rcþ ð1� rÞðs� cÞð1� sÞl�1�

¼ l½ð1� cÞZðl � 1Þ � ZðlÞ�, ð6aÞ

where

ZðlÞ ¼ rþ ð1� rÞð1� sÞl . (6b)
Hence, CL40 if and only if

ZðlÞ
Zðl � 1Þ

o1� c. (7)

Thus, provided

rþ ð1� rÞð1� sÞo1� c, (8)

there exists a unique integer l�mðX1Þ such that (7) is satisfied
for lpl�m (Appendix F).
Restated, the pure innate strategy is an ESS if inequality

(8) is reversed or if l4l�m.
5. Special case of K þ L ¼ 1

Allele A defines a mixed strategy of individual and social
learning (0oK ¼ 1� Lo1), a pure individual learning
strategy (L ¼ 1), or a pure social learning strategy (K ¼ 1).
It is convenient to rewrite (4) by applying the transfor-

mation

dP ¼
dK þ dL

2
; dQ ¼

dK � dL

2
. (9)

In the parameter space of K and L (Fig. 1), dP and dQ

are the components perpendicular and parallel to the line
K þ L ¼ 1, respectively. Clearly dPp0, since the para-
meter space is a simplex. A mutant allele, a, that introduces
a small innate component is characterized by dPo0. On
the other hand, if the probabilities of individual and social
learning are slightly altered without adding an innate
component, then dP ¼ 0 and dQa0.
In terms of dP and dQ, the approximate eigenvalue (4a)

becomes

l � 1þ CPdPþ CQdQ, (10a)

where

CP ¼ � r
sþ cþ d

V̂
þ
Xl�1
i¼1

sð ^̄u
ðiÞ
þ ^̄v
ðiÞ
Þ þ cþ d

Ŵ
ðiÞ

" #

þ ð1� rÞ
s� c� d

V̂
þ
Xl�1
i¼1

sð1þ ûðiÞ þ v̂ðiÞÞ � c� d

Ŵ
ðiÞ

" #
,

ð10bÞ

CQ ¼ �
s� cþ d

V̂
�
Xl�1
i¼1

sð ^̄u
ðiÞ
þ ^̄v
ðiÞ
Þ � cþ d

Ŵ
ðiÞ

, (10c)

with

V̂ ¼ Lð1� cÞ þ Kð1� d � sÞ,

Ŵ
ðiÞ
¼ V̂ þ KðûðiÞ þ v̂ðiÞÞs. ð10dÞ

In Appendix G, the binary sums of the phenogenotypes
frequencies, ûðiÞ þ v̂ðiÞ and ^̄u

ðiÞ
þ ^̄v
ðiÞ
, are obtained, which

permits explicit evaluation of (10) (also (11) below).
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Fig. 1. Parameter space of K (probability of social learning) and L (probability of individual learning) is shown, with vector field (arrows) indicating the

most likely direction that evolution by the cumulative substitution of mutations of small effect will take. Filled circles denote the convergent stable

strategies (CSS), which are also evolutionarily stable (ESS). Other parameters are: for (a)–(c) s ¼ 0:3, c ¼ 0:2, d ¼ 0:19, r ¼ 10�6, (a) l ¼ 20, (b) l ¼ 35,

(c) l ¼ 70, and for (d) s ¼ 0:3, c ¼ 0:29, d ¼ 0:28, r ¼ 0:05, l ¼ 100.
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Eq. (10) shows that a mixed learning strategy (0oK ¼

1� Lo1) can be locally stable against all alternative
strategies with dP ¼ 0 and dQa0 only if CQ ¼ 0, i.e.,

s� cþ d

V̂
þ
Xl�1
i¼1

sð ^̄u
ðiÞ
þ ^̄v
ðiÞ
Þ � cþ d

Ŵ
ðiÞ

¼ 0. (11)

In addition, we require CP40 (to first order) when dPo0.
Hence, a mixed learning strategy is an ESS (to first order)
only if inequality CP40 and equality (11) are both satisfied
((11) can be solved numerically for L; Figs. 1 and 2).

Similarly, the pure individual learning strategy (L ¼ 1) is
locally stable against alternative strategies with dP ¼ 0 and
dQ40 if CQo0, i.e.,

lo
s

c� d
. (12)
Our assumption 0odocos entails that (12) is satisfied
for l sufficiently small. If (8) and (12) both hold, the pure
individual learning strategy is an ESS (Appendix H).
Finally, the pure social learning strategy (K ¼ 1) is

always unstable. Conditions (11) and (12) were obtained by
Feldman et al. (1996, p. 227).

6. Numerical work

For general K and L, we investigate the model
numerically. The periodic equilibrium solution for the
monomorphism in allele A is uniquely determined by
iterating (A.1) and (A.2) of Appendix A. Moreover, local
stability to invasion by allele a can be resolved by
evaluating the eigenvalue (4). Let us represent the wild
type strategy by a point (K, L) in the parameter space of K
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Fig. 2. A bifurcation diagram of AESS’s. Attractive evolutionarily stable

probability of individual learning, L*, is plotted against the period of

environmental change, l. For lo s
c�d

, the pure individual learning strategy

(K� ¼ 0, L� ¼ 1) is the unique AESS (crosses). For s
c�d

olpl�m, a mixed

learning strategy (0oL*o1, K� ¼ 1� L�) is the unique AESS (triangles).

For l4l�m, the pure innate strategy (K� ¼ 0, L� ¼ 0) coexists as an AESS

(circles) with a mixed learning strategy. Hence, the model exhibits

‘‘bistability’’ when l4l�m. Parameters are: s ¼ 0:3, c ¼ 0:2, d ¼ 0:19,
r ¼ 10�6. Critical values of the period are s

c�d
¼ 30, l�m ¼ 37, l�M ¼ 61.
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and L (Fig. 1) and the mutant strategy by a neighboring
point (K þ dK , Lþ dL). If (K, L) is an interior point, then
(K þ dK , Lþ dL) may occupy any one of the four
quadrants centered on (K, L). For a boundary point
(K, L), there are restrictions on (dK, dL), for example as
noted in Section 5 and Appendix H. With each point (K, L)
there is associated a vector of coefficients (CK, CL) defined
by (4b) and (4c), which in conjunction with the vector of
differences (dK, dL) determines whether the mutant
strategy will invade.

The wild type strategy is locally stable to invasion by any
mutant strategy for which CLdLþ CKdK (the inner
product of the two vectors) is negative. This will be the
case when the angle between (dK, dL) and (CK, CL) exceeds
901. On the other hand, the wild type strategy will
be invaded by any mutant strategy for which
CLdLþ CKdK40. This inequality will hold if the angle
between (dK, dL) and (CK, CL) is less than 901. Hence, if we
view evolution as proceeding gradually by the cumulative
substitution of mutations of small effect (not necessarily at
the same genetic locus), the vector (CK, CL) serves as a
rough indicator of the direction in parameter space that
evolution will take.

In Fig. 1 we have drawn ‘‘vector fields’’ obtained by
plotting the vectors (CK, CL) at various interior and
boundary points of the parameter space. Thus, an orbit in
this vector field represents an evolutionary path. A CSS is
obtained numerically as the stable equilibrium to which the
dynamical system

_K ¼ CK ; _L ¼ CL (13)
converges in the simplex 0pKp1, 0pLp1, and
0pK+Lp1 (Fig. 1). The dots over K and L in (13) signify
differentiation by a time variable, and of course the CSS
may depend on the initial conditions. The method
described here is similar to the adaptive dynamics
approach (e.g., Geritz et al., 1997), where the gradient of
the fitness landscape is (CK, CL). We first solve (13)
numerically to locate the CSS’s. Then we check that these
equilibria are also ESS’s. As shown in Sections 4 and 5,
tests of evolutionary stability are available in the special
cases K ¼ L ¼ 0 and K þ L ¼ 1. (Appendix I illustrates
the difference between CSS and ESS.)
The numerical work suggests that there are no interior

CSS’s, which would require CK ¼ CL ¼ 0. Neither do we
find CSS’s on the L-axis (K ¼ 0, 0oLo1) or the K-axis
(L ¼ 0, 0oKp1). Thus, a strategy with both an innate and
a learning (whether individual or social) component cannot
be a CSS. The CSS’s are the pure individual learning
strategy, a mixed learning strategy, and the pure innate
strategy. In fact, as we see below, each CSS is also an ESS,
hence an AESS.
Fig. 1a illustrates the case where the pure individual

learning strategy is the unique CSS. Fig. 1b shows that a
mixed learning strategy can be the unique CSS. In Fig. 1c
there are two CSS’s, the pure innate strategy and a mixed
learning strategy. Although not shown, the pure innate
CSS may coexist with the pure individual learning CSS.
Finally, the pure innate strategy can be the sole CSS as
shown in Fig. 1d. Each pure individual learning CSS and
pure innate CSS is also an ESS, as can be verified by
application of (7), (8), and (12). In addition, numerical
work using (10b) and (11) suggests that each mixed
learning CSS is an ESS; since (11) is necessary but not
sufficient, local stability against mutant strategies repre-
sented by neighboring points of the parameter space was
checked by iterating (1) and (2).
Fig. 2 is a ‘‘bifurcation diagram’’ illustrating the

dependence of the AESS’s on parameter l (the environ-
mental periodicity). Inequality (8) holds in this figure
(other parameter are: s ¼ 0:3, c ¼ 0:2, d ¼ 0:19, r ¼ 10�6),
whence the pure individual learning strategy is an ESS for
lo s

c�d
(i.e., when (12) is satisfied), and the pure innate

strategy is an ESS for l4l�m (i.e., when (7) is reversed).
Numerical work using (10b) and (11) suggests that a mixed
learning ESS exists for each l4 s

c�d
. All points indicated by

crosses, triangles, or circles have been shown numerically
to be CSS’s. Hence, there are apparently two AESS’s
when l4l�m.
On the basis of extensive numerical work, we have

identified two other bifurcation patterns when l is varied.
First, if inequality (8) is reversed (because the penalty
suffered by individual learners, c, is almost as large as the
cost of maladaptive behavior, s), the pure innate strategy
appears to be the only ESS. In this case, learning cannot
evolve whatever the value of l. Second, if l�mo

s
c�d

(e.g., for
parameter values s ¼ 0:4, c ¼ 0:39, d ¼ 0:38, r ¼ 10�6), the
pure individual learning ESS coexists with the pure innate
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ESS for l�molo s
c�d

, whereas a mixed learning ESS and the
pure innate ESS coexist for l4 s

c�d
. All ESS’s are also

CSS’s, hence AESS’s.
It is also possible to plot bifurcation diagrams against

other parameters. Let us briefly note the effect of
parameter r. The pure innate strategy is an ESS if CLo0
in (6a), or equivalently

r4
ðs� cÞð1� sÞl�1

cþ ðs� cÞð1� sÞl�1
. (14)

In words, the frequency of preadapted alleles at the
innate information locus must be sufficiently high. From
(11) we see that the probability of individual learning, L, at
a mixed learning strategy is independent of r. Evolutionary
stability, however, requires that CP40 in (10b). A
necessary but not sufficient condition for this inequality
to hold is that r be sufficiently small. Numerical work
shows that an ESS is also a CSS, hence an AESS. Thus, a
possible bifurcation pattern comprises two horizontal
straight lines, one representing the pure innate strategy,
which is an AESS when (14) is satisfied, and the other a
mixed learning strategy, which is an AESS for sufficiently
small values of r.
7. Discussion

We studied the evolution of social learning in a model
where small genotypic differences occur in the probabilities
that an organism will commit itself to individual learning,
social learning, or innate determination of behavior.
Analytical and numerical methods were employed to
identify the evolutionarily stable pure or mixed strategies
(ESS) that are also CSS. The possible AESS are the pure
innate strategy (K ¼ 0, L ¼ 0), a mixed learning strategy
(0oLo1, K ¼ 1� L), and the pure individual learning
strategy (K ¼ 0, L ¼ 1).

It is perhaps surprising that no AESSs are found with
both an innate and a learning component. This result
apparently contradicts the observation that some strategies
currently used by humans, for example in language
acquisition, involve learning subject to innate constraints
(Chomsky, 1975; Bickerton, 1983). We can think of at least
three reasons for the discrepancy. First, the present model
may be too simple—we have assumed that each organism
commits itself during development to one of three pure
strategies, whereas actual examples of a mixed strategy
often involve the simultaneous application of two or more
pure strategies by the same organism—which is the most
likely explanation. Second, a current strategy may not be
an AESS, since the waiting time for the appropriate
mutations may be prohibitively long. Third, the fault may
lie with our reliance on numerical method alone to locate
the CSS’s—no numerical survey can claim to be complete.

According to the bifurcation diagram of Fig. 2, the pure
individual learning strategy is the unique AESS if the
environmental periodicity is short lo s

c�d

� �
, a mixed
learning strategy is the unique AESS if changes occur with
intermediate frequency s

c�d
olpl�m

� �
, and two AESSs—a

mixed learning strategy (with a relatively large social
learning component, K) and the pure innate strategy—
coexist if the environment is highly stable l4l�m

� �
. Except

for the continued presence of a mixed learning AESS
beyond the threshold l�m, with implications discussed
below, the dependence on the environmental periodicity
is essentially the same as that noted by Wakano et al.
(2004) and Aoki et al. (2005).
Let us assume the bifurcation diagram of Fig. 2. Then, to

reiterate, the pure innate strategy is an AESS if the
environmental periodicity l4l�m. On the other hand, if the
environment is sufficiently changeable so that lpl�m (i.e.,
when (7) holds), the pure innate strategy is invadable, but
only by a mutant strategy with an individual learning
component that is large relative to the social learning
component (0pdKodL, see Section 4). Hence, the initial
evolution of learning from an ancestral state of innate
behavior likely involves a stage in which learning, on the
rare occasions that it occurs, is entirely or predominantly
individual. Nevertheless, by the cumulative substitution of
mutations of small effect, the relative reliance on social
learning will subsequently increase if s

c�d
olpl�m (depend-

ing on the parameter set, this interval may not be as narrow
as Fig. 2 would suggest). Ultimately, a mixed learning
strategy with a non-negligible social learning component
will evolve, as this is the unique AESS (Fig. 1b) in this case.
Still assuming the same bifurcation diagram, suppose

that a population at this mixed learning AESS (Fig. 1b)
now experiences a more stable environment (l4l�m). Two
AESS’s, the pure innate strategy and a mixed learning
strategy with a relatively larger social learning component
(Fig. 1c), replace the previous unique AESS (Fig. 1b). This
population will not necessarily evolve back to the pure
innate condition (K ¼ 0, L ¼ 0,). Rather, the vector field of
Fig. 1c suggests it is more likely to evolve along the edge
K þ L ¼ 1 toward the new AESS with the greater reliance
on social learning (a larger value of K). Hence, the model
exhibits ‘‘irreversibility’’. Once social learning emerges
during a temporary era of intermediate environmental
stability, a subsequent elongation of the environmental
periodicity toward increased stability may result in the
intensification of social learning, rather than a return to
innate behavior.
Richerson and Boyd (2005) note a possible connection

between the evolution of social learning in humans and the
increased variability of the world’s climate during the
Pleistocene (beginning about 2 million years ago). On the
other hand, the climate has been very stable according to
the ice core data for the last 10,000 years, or about 500
generations. (Nevertheless, even in a stable climate, range
expansion and migration may have caused drastic and
rapid changes in the environment governing the evolution
of early humans.) The irreversibility of our model may
account for the observation that our social learning ability
has not been lost.
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In stark contrast, the Wakano et al. (2004) major gene
model predicts a sharp threshold, l�M , above and below
which obligate innate behavior and a polymorphism of
obligate individual and social learners, respectively, are
globally stable. Here, l�M is defined as the largest integer
that satisfies the inequality

ZðlÞoð1� cÞl (15)

where Z(l) is given by (6b). Incidentally, l�mol�M (Appendix
F), which entails more stringent conditions for the invad-
ability of the pure innate strategy in the present model.

We have begged the question of the accuracy of social
learning, by assuming that the behavior of the exemplar is
faithfully reproduced in the observer. However, a more
fundamental analysis would require us to show that social
learning does indeed evolve toward greater precision.
Given that it does, when the reliability of social learning
has attained a level sufficient for the development of a
cumulative culture, we would expect that culture to affect
the environment, in particular render it more, or less,
stable. Clearly, such ‘‘cultural niche construction’’ (Laland
et al., 2000; Odling-Smee et al., 2003; Ihara and Feldman,
2004) could have far reaching implications. (We say more,
or less, because it is not obvious what the long-term, as
opposed to the immediate effects, of an innovation will be.
For example, the control of fire and the making of clothing
greatly modified the hominid niche, but these innovations
also provided protection against temperature fluctuations.)
To fully understand the nature of human social learning, it
is necessary to take into account the fact that a significant
part of our environment is, and has been, ‘‘man-made’’.
Note our use of the adjective ‘‘natural’’ in the title of the
present paper to emphasize the limitations of the research
described here.
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Appendix A

Using superscripts to denote the number of generations
that have elapsed after an environmental change, we
observe from (1) that

ûð1Þ ¼ r½1� K � Lþ Lð1� cÞ�=V̂ ,

^̄u
ð1Þ
¼ rKð1� d � sÞ=V̂ ,

v̂ð1Þ ¼ ð1� rÞLð1� cÞ=V̂ ,

^̄v
ð1Þ
¼ ð1� rÞ½ð1� K � LÞð1� sÞ þ Kð1� d � sÞ�=V̂ ,

ðA:1aÞ
where

V̂ ¼ ð1� K � LÞ½rþ ð1� rÞð1� sÞ�

þ Lð1� cÞ þ Kð1� d � sÞ, ðA:1bÞ

and from (2) that

ûðiÞ ¼ ðûði�1Þ þ ^̄u
ði�1Þ
Þ½1� K � Lþ Lð1� cÞ

þ Kðûði�1Þ þ v̂ði�1ÞÞð1� dÞ�=Ŵ
ði�1Þ

,

^̄u
ðiÞ
¼ ðûði�1Þ þ ^̄u

ði�1Þ
ÞKð ^̄u

ði�1Þ
þ ^̄v
ði�1Þ
Þ

� ð1� d � sÞ=Ŵ
ði�1Þ

,

v̂ðiÞ ¼ ðv̂ði�1Þ þ ^̄v
ði�1Þ
Þ½Lð1� cÞ

þ Kðûði�1Þ þ v̂ði�1ÞÞð1� dÞ�=Ŵ
ði�1Þ

,

^̄v
ðiÞ
¼ ðv̂ði�1Þ þ ^̄v

ði�1Þ
Þ½ð1� K � LÞð1� sÞ

þ Kð ^̄u
ði�1Þ
þ ^̄v
ði�1Þ
Þð1� d � sÞ�=Ŵ

ði�1Þ
, ðA:2aÞ

where

Ŵ
ði�1Þ
¼ ð1� K � LÞ½ûði�1Þ þ ^̄u

ði�1Þ

þ ðv̂ði�1Þ þ ^̄v
ði�1Þ
Þð1� sÞ�

þ Lð1� cÞ þ K ½ðûði�1Þ þ v̂ði�1ÞÞð1� dÞ

þ ð ^̄u
ði�1Þ
þ ^̄v
ði�1Þ
Þð1� d � sÞ� ðA:2bÞ

for 2pipl. Recursions (A.2) can be solved iteratively with
(A.1) as the initial conditions to yield a periodic solution.
Global stability in the genetically monomorphic subspace
is assured, since the phenogenotype frequencies in the
postchange generation assume fixed values (see formulae
for ûð1Þ; ^̄u

ð1Þ
; v̂ð1Þ; ^̄v

ð1Þ
in (A.1)).

Appendix B

Take xðiÞ þ x̄ðiÞ and yðiÞ þ ȳðiÞ as the small variables. Let
xð0Þ þ x̄ð0Þ and yð0Þ þ ȳð0Þ be the initial deviations from the
equilibrium point ðûð0Þ; ^̄u

ð0Þ
; v̂ð0Þ; ^̄v

ð0Þ
Þ, where the superscript

0 denotes the prechange generation. Then, after one
application of (1) followed by l�1 applications of (2), we
have

xðlÞ þ x̄ðlÞ

yðlÞ þ ȳðlÞ

 !
¼
Yl�1
i¼1

gðiÞ 0

0 xðiÞ

 !
�

a a

b b

 !
xð0Þ þ x̄ð0Þ

yð0Þ þ ȳð0Þ

 !
,

where the elements of the coefficient matrices are (3b).
Clearly, the dominant eigenvalue is (3a).

Appendix C

Substitute K ¼ L ¼ 0 in (A.1) and (A.2). Then,

^̄u
ðiÞ
¼ v̂ðiÞ ¼ 0 for 1pipl, (C.1a)

V̂ ¼ rþ ð1� rÞð1� sÞ, (C.1b)

Ŵ
ðiÞ
¼ ûðiÞ þ ^̄v

ðiÞ
ð1� sÞ for 1pipl � 1. (C.1c)
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Next, taking the ratio of the first and fourth lines of
(A.2a) yields the linear recursion

ûðiÞ

^̄v
ðiÞ
¼

ûði�1Þ

^̄v
ði�1Þ

1

1� s
,

which can be solved with the initial condition

ûð1Þ

^̄v
ð1Þ
¼

r
ð1� rÞð1� sÞ

.

Thus

ûðiÞ

^̄v
ðiÞ
¼

r
1� r

1

1� s

� �i

,

or equivalently

ûðiÞ ¼
r

rþ ð1� rÞð1� sÞi
. (C.2)

Substituting (C.2) in (C.1) gives

Ŵ
ðiÞ
¼

rþ ð1� rÞð1� sÞiþ1

rþ ð1� rÞð1� sÞi
for 1pipl � 1. (C.3)
Appendix D

Substituting K ¼ L ¼ 0 and (C.1) in (4b) gives

CL ¼ ½�rlcþ ð1� rÞlðs� cÞð1� sÞl�1�
1

V̂

Yl�1
i¼1

1

Ŵ
ðiÞ
. (D.1a)

Similarly from (4c)

CK ¼ � r ld þ s 1þ
Xl�1
i¼1

^̄v
ðiÞ

 !" #
þ ð1� rÞð1� sÞl�1

(

� ld � s
Xl�1
i¼1

ûðiÞ

" #)
1

V̂

Yl�1
i¼1

1

Ŵ
ðiÞ
. ðD:1bÞ

Using (C.1b) and (C.3), we achieve the simplification

1

V̂

Yl�1
i¼1

1

Ŵ
ðiÞ
¼

1

rþ ð1� rÞð1� sÞl
. (D.2)

We now use the assumption r� ð1� sÞl to obtain the
zeroth order approximation in the small quantity r. First,
(D.2) reduces to 1

ð1�sÞl
. Second, (C.2) shows that ûðiÞ in

(D.1b) are first order in r, and hence can be neglected.
Thus,

CL ¼
lðs� cÞ

1� s
; CK ¼ �

ld

1� s

as required.
Appendix E

The terms multiplied by d or d þ s on the right-hand side
of (4c) are negative. Hence,

CKo
r½V̂ þ ð1� K � LÞð1� rÞs�

V̂

(

�
Yl�1
i¼1

Ŵ
ðiÞ
þ ð1� K � LÞðv̂ðiÞ þ ^̄v

ðiÞ
Þs

Ŵ
ðiÞ

)

� �
Xl�1
i¼1

ð ^̄u
ðiÞ
þ ^̄v
ðiÞ
Þs

Ŵ
ðiÞ
þ ð1� K � LÞðv̂ðiÞ þ ^̄v

ðiÞ
Þs

( )

þ
ð1� rÞ½V̂ � ð1� K � LÞrs�

V̂

(

�
Yl�1
i¼1

Ŵ
ðiÞ
� ð1� K � LÞðûðiÞ þ ^̄u

ðiÞ
Þs

Ŵ
ðiÞ

)

�
Xl�1
i¼1

ðûðiÞ þ v̂ðiÞÞs

Ŵ
ðiÞ
� ð1� K � LÞðûðiÞ þ ^̄u

ðiÞ
Þs

( )
.

Since K þ L ¼ 0, and Appendix C informs us that ^̄u
ðiÞ
¼

v̂ðiÞ ¼ 0, V̂ ¼ rþ ð1� rÞð1� sÞ, and Ŵ
ðiÞ
¼ ûðiÞ þ ^̄v

ðiÞ
ð1� sÞ,

this simplifies to

V̂
Yl�1
i¼1

Ŵ
ðiÞ
� CKo� r

Xl�1
i¼1

^̄v
ðiÞ

sþ ð1� rÞð1� sÞl
Xl�1
i¼1

ûðiÞs

1� s
.

Thus, substituting the explicit values of ûðiÞ and ^̄v
ðiÞ

from
Appendix C, we obtain

V̂
Yl�1
i¼1

Ŵ
ðiÞ
� CKorð1� rÞs

Xl�1
i¼1

ð1� sÞl�1 � ð1� sÞi

rþ ð1� rÞð1� sÞi
o0.
Appendix F

The ratio ZðlÞ
Zðl�1Þ, where Z(l) is defined in (6b), is monotone

increasing in l. Moreover, Zð1Þ
Zð0Þ ¼ rþ ð1� rÞð1� sÞ and

lim
l!1

ZðlÞ
Zðl�1Þ ¼ 1. Hence, provided (8) holds, there exists a

unique root, y, of the equation

ZðyÞ
Zðy� 1Þ

¼ 1� c

Next, we show that (7) is more stringent than (15).

Suppose lpl�m. Then

ZðlÞ ¼
Zð1Þ
Zð0Þ
�

Zð2Þ
Zð1Þ
� � � � �

ZðlÞ
Zðl � 1Þ

oð1� cÞl ,

since Zð0Þ ¼ 1. Hence, lpl�m implies lpl�M .
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Appendix G

Setting K þ L ¼ 1 in (A.1a) and taking the ratio of the
binary sums of appropriate lines yields

ûð1Þ þ v̂ð1Þ

^̄u
ð1Þ
þ ^̄v
ð1Þ
¼

Lð1� cÞ

Kð1� d � sÞ
.

Next, doing the same with (A.2a) gives

ûðiÞ þ v̂ðiÞ

^̄u
ðiÞ
þ ^̄v
ðiÞ
¼

Lð1� cÞ þ Kðûði�1Þ þ v̂ði�1ÞÞð1� dÞ

Kð ^̄u
ði�1Þ
þ ^̄v
ði�1Þ
Þð1� d � sÞ

¼
Lð1� cÞ þ Kð1� dÞ

Kð1� d � sÞ

ûði�1Þ þ v̂ði�1Þ

^̄u
ði�1Þ
þ ^̄v
ði�1Þ

þ
Lð1� cÞ

Kð1� d � sÞ
.

Hence, setting a ¼ Lð1�cÞþKð1�dÞ
Kð1�d�sÞ

and b ¼ Lð1�cÞ
Kð1�d�sÞ

, we obtain

ûðiÞ þ v̂ðiÞ

^̄u
ðiÞ
þ ^̄v
ðiÞ
¼ b

1� ai

1� a
,

or equivalently

ûðiÞ þ v̂ðiÞ ¼
bð1� aiÞ

1� aþ bð1� aiÞ
.

Appendix H

Any alternative to the pure individual learning strategy
has dPp0 and dQ40, where consistency requires
�dQodPp0. When L ¼ 1,

CP ¼
½2lð1� rÞ � 1�s� lðcþ dÞ

1� c
,

CQ ¼ �
s� cþ d � ðl � 1Þðc� dÞ

1� c
,

where (12) entails CQo0. If CP40, then clearly lo1, and
we are done. If CPo0, the constraint �dQodPp0
implies CPdPo�CPdQ, so that lo1�(CP�CQ)dQ.
But CP�CQ ¼ 2l[(1�r)s�c]/(1�c). Hence, lo1 when
co(1�r)s, or equivalently (8).

Appendix I

The eigenvalue (3) is a function of the wild type strategy
(K, L) and the mutant strategy (K þ dK ;Lþ dL). As a
purely hypothetical example, suppose

l ¼ 1þ a½ðK � K�ÞdK þ ðL� L�ÞdL� þ b½ðdKÞ2 þ ðdLÞ2�,

where (K*, L*) is an interior point, and a, b are constants.
Then, CK ¼ aðK � K�Þ and CL ¼ aðL� L�Þ. Clearly,
(K*, L*) is an ESS if bo0, i.e., if the quadratic form in
dK and dL is negative definite. However, if a40, then all
vectors originating at neighboring points (K� þ dK ,
L� þ dL) are directed outward from (K*, L*). Hence,
(K*, L*) is not a CSS. Conversely, if ao0 but b40, then
(K*, L*) is a CSS but not an ESS, since all vectors
originating at neighboring points (K� þ dK , L� þ dL) are
directed toward (K*, L*), but the eigenvalue at (K*, L*) is
greater than one.
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