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ABSTRACT Adaptive dynamics formalism demonstrates that, in a constant environment, a continuous trait may first converge to
a singular point followed by spontaneous transition from a unimodal trait distribution into a bimodal one, which is called “evolutionary
branching.” Most previous analyses of evolutionary branching have been conducted in an infinitely large population. Here, we study
the effect of stochasticity caused by the finiteness of the population size on evolutionary branching. By analyzing the dynamics of trait
variance, we obtain the condition for evolutionary branching as the one under which trait variance explodes. Genetic drift reduces the
trait variance and causes stochastic fluctuation. In a very small population, evolutionary branching does not occur. In larger popula-
tions, evolutionary branching may occur, but it occurs in two different manners: in deterministic branching, branching occurs quickly
when the population reaches the singular point, while in stochastic branching, the population stays at singularity for a period before
branching out. The conditions for these cases and the mean branching-out times are calculated in terms of population size, mutational
effects, and selection intensity and are confirmed by direct computer simulations of the individual-based model.

IN addition to models using quantitative genetics (Lande 1981;
Barton and Turelli 1991; Iwasa et al. 1991; Pomiankowski

et al. 1991), adaptive dynamics formalism has revealed di-
verse behaviors of evolutionary dynamics associated with
continuous traits in various organisms (Metz et al. 1992;
Dieckmann and Law 1996; Geritz et al. 1997, 1998). This
approach allows us to analyze the evolution of many eco-
logical traits for which frequency-dependent selection is
prevalent without specifying the derlying genetic systems
controlling the trait. Even in a perfectly constant environ-
ment, a population may show intriguing temporal behavior.
For example, if the trait evolves by accumulation of mu-
tations of small magnitude and if the fitness is frequency
dependent, a continuous trait may show convergence to a
singular point followed by spontaneous splitting of a unimodal
trait distribution into a bimodal (or multimodal) one, referred
to as “evolutionary branching” (Metz et al. 1992, 1996; Geritz
et al. 1997). Evolutionary branching is predicted to occur

at an evolutionarily singular point that is approaching
stable (or convergence stable, CS) but not evolutionarily
stable (ES), and it is actually observed in individual-based
simulations in many models for the evolution of ecologi-
cal traits.

In evolutionary branching, an evolving population spon-
taneously changes its trait distribution from unimodal to
bimodal (or multimodal). Although evolutionary branching
has been regarded as a model of sympatric speciation by
some authors (Dieckmann and Doebeli 1999; Doebeli and
Dieckmann 2000), the relationship between evolutionary
branching in adaptive dynamics formalism and speciation
events has been the focus of much debate (for review, see
Waxman and Gavrilets 2005).

Most previous analyses of adaptive dynamics have
assumed an infinite population size and that the fitness
landscape acts as the deterministic driving force of evolu-
tion. However, in a finite population, stochastic fluctuations
are unavoidable. For example, an individual with a lower
fitness may be able to produce more offspring just by
chance. Thus, a finite population can evolve against the
selection gradient. As a result, stochasticity allows a popula-
tion to jump from a low local peak to a higher peak. Hence,
stochastic fluctuation can be an important factor in the
outcome of evolution. The importance of stochasticity, or
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genetic drift, has been studied in detail in the context of
quantitative population genetics (e.g., Lande 1976; Tazzyman
and Iwasa 2000). On the other hand, in population genet-
ics, random drift is known to decrease the genetic diversity
of a population (e.g., Ewens 2004), which tends to slow
down the action of natural selection. Hence, the effect of
genetic drift is important to understand evolutionary dy-
namics, including evolutionary branching, in finite popula-
tions. In fact, Claessen et al. (2007) analyzed evolutionary
branching in a model including three species and reported
that genetic drift tends to cause a delay in evolutionary
branching. However, a more detailed study of the relation-
ship between evolutionary branching and genetic drift is
needed.

In this article, we study the effect of stochastic fluctuation
caused by the finiteness of population size (random genetic
drift) on evolutionary branching. As an illustrative example,
we adopt a model of a public goods game studied by Doebeli
et al. (2004), who investigated evolutionary branching by
using a corresponding individual-based simulation. The game
model deals with a situation that is both biologically and
socially interesting: a self-organized differentiation of play-
ers into a highly cooperative group and a noncooperative
group. Concerning the genetics, we in effect assume that
the population is haploid and that the focal trait is con-
trolled by a locus with many alleles. By focusing on this
simplest case, we can analyze the effect of random genetic
drift on the evolutionary outcome most clearly. We first
show the results of individual-based simulations, using dif-
ferent population sizes. We show that genetic drift is espe-
cially important when the population size is small and that
evolutionary branching does not necessarily occur even
when the standard theory of adaptive dynamics predicts that
it should. We also derive deterministic and stochastic ver-
sions of the dynamics of the trait variance. We reveal that
there are two different manners in which evolutionary branch-
ing occurs: in deterministic branching, branching may occur
quickly after the population reaches the singular point, while
in stochastic branching, the population stays at a singularity
for a period before branching out suddenly. We derive the
conditions and mean branching-out times for these cases and
confirm our predictions by direct computer simulations of the
individual-based model.

Evolutionary Branching in a Game in a Finite Population

Individual-based model

As a full stochastic model of a population under natural
selection, mutation, and random genetic drift, we consider
the following stochastic process. The population consists of
N individuals reproducing asexually. Each individual has
a genetically determined trait value z 2 ½0; 1�. At each dis-
crete time step t, an individual i obtains a fecundity Fi from
pairwise interactions with the other N 2 1 individuals. Each
interaction is a two-player game where a payoff given to an

individual i matched with an individual j is given by f ðzi; zjÞ.
Its fecundity Fi is denoted by

Fi ¼
X
j6¼i

f ðzi; zjÞ: (1)

Our framework is valid for any payoff function f ðzi; zjÞ. As an
example, we adopt a model by Doebeli et al. (2004) in
which trait z represents the amount of investment into pub-
lic goods shared by both players. In this game, the payoff
function is represented by

f ðzi; zjÞ ¼ 1þ Bðzi þ zjÞ2CðziÞ; (2a)

where the benefit function is

Bðz1 þ z2Þ ¼ b1ðz1 þ z2Þ þ b2ðz1 þ z2Þ2; (2b)

and the cost function is

CðzÞ ¼ c1zþ c2z2: (2c)

To keep the population size constant, the fitness of an
individual with trait zi is denoted as

wðziÞ ¼ Fi
ð1=NÞPjFj

: (3)

When the population size is infinitely large, Doebeli
et al. (2004) have shown that the singular strategy
z* ¼ ðc1 2 b1Þ=ð4b2 2 2c2Þ is convergence stable when
QCS ¼ 4b2 22c2 , 0 and evolutionarily stable when
QES ¼ 2b2 22c2 , 0. The singular strategy is referred to as
an evolutionary branching point when QCS ,0 and QES . 0.
They have observed evolutionary branching in an individual-
based simulation of a large population (N = 10,000).

In a finite population, the model includes random genetic
drift, and the details of the updating rule and the order of
different stages in population dynamics become impor-
tant. Here, we assume a Wright–Fisher process. At each
time step, fecundity is calculated for all N individuals.
Then all individuals die and are replaced by their off-
spring, which are sampled multinomially, with the prob-
ability of an individual being the parent of each offspring
individual proportional to the fecundity of the focal
individual.

After reproduction, there is a small chance of mutation m,
and the mutant has a trait value slightly different from that
of the parent. To be specific, it follows a normal distribution
with a mean equal to the parent’s and a variance s2. Mutants
are constrained to be between 0 and 1, which confines trait z
within an interval [0, 1].

Evolutionary branching depends on the population size

All simulations were run with parameter values for which
a unique singular point exists that is convergence stable and
evolutionarily nonstable (i.e., the evolutionary branching
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point). Thus, evolutionary branching is expected when the
population size is infinitely large.

When the population size is large (N = 8000), evolution-
ary branching occurs as soon as the trait evolves to reach the
CS value z* (Figure 1A). For an intermediate population size
(N = 1000), the population lingers around the CS value, z*,
before it finally shows evolutionary branching. The waiting
time until the evolutionary branching varies considerably
among different simulation runs with the same parameter
values (Figure 1, B and C). For a small population size
(N = 200), we do not observe evolutionary branching
and the population seems to stay around z*, even though
z* is not evolutionarily stable (Figure 1D) (see also Wakano
and Lehmann 2012).

The evolutionary branching dynamics are characterized
by an abrupt increase or explosion of the variance of the
focal phenotype (the trait variance). If all the parameters for
the interactions are the same, a small population does not
branch, an intermediately large population shows delayed
branching, and a large population branches immediately.
The intuitive reason for the smallness of the population size
to suppress evolutionary branching is that genetic diversity
is reduced by genetic drift every generation. In the following
sections, we provide approximate dynamics for the trait
variance to understand these simulation results.

Dynamics of Trait Variance

The full (individual-based) model is analytically intractable.
Therefore, we derive a reduced simplified dynamical system
here, which is tractable and gives predictions on the behavior

of the full model. One generation in the reduced model
consists of two substeps.

Substep 1: Natural selection and mutation

Let uðzÞ denote a distribution of trait z, which is normalized
to satisfy

R
uðzÞdz ¼ 1. When a fitness function wðzÞ is given

and selection and mutation are sufficiently weak, the trait
distribution in the offspring pool after mutation, denoted by
xðzÞ, can be approximated by the following replicator equa-
tion plus a mutation term,

xðzÞ ¼ uðzÞ þ �
wðzÞ2 �w

�
uðzÞ þ ms2

2
@2

@z2
uðzÞ; (4)

where �w is the population average of fitness values. The
second term on the right-hand side represents the effect of
selection and the third term represents the effect of muta-
tion. The Taylor expansion of the fitness function around the
average trait value �z is denoted as

wðzÞ¼ wð�zÞ þ w1ðz2�zÞ þ w2

2
ðz2�zÞ2; (5)

where the coefficients w1 and w2 are determined by the
current state �z. The coefficient w1 represents the selection
gradient. The coefficient w2 indicates stabilizing selection if
it is negative and indicates disruptive selection if it is posi-
tive. The derivation of w2 from the payoff function fðzi; zjÞ is
explained in Appendix A. For parameter values used in our
simulations, we have w2 � 0:1, implying that disruptive se-
lection is operating. The population average and the vari-
ance of trait values in the offspring trait distribution xðzÞ are
respectively denoted as

Figure 1 Evolutionary dynamics. (A) A simulation run with N = 8000. (B and C) Two different simulation runs with N = 1000. (D) A simulation run with
N ¼ 200. Parameters: m 5 0:01;     s 5 0:02;     ðb1; b2; c1; c2Þ 5 ð6:0; 21:4;   4:56; 21:6Þ.
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Avx½z�¼ �zþ w1m2 þ w2

2
m3; (6a)

Varx½z�¼ m2 2 ðw1
2 þ w2

2
Þm2

2 þ w1m3 þ w2

2
m4 þ ms2;

(6b)

where mk denotes the kth centralized moment of uðzÞ. The
above approximation is derived by neglecting m5 and higher-
order moments (see Appendix B).

Substep 2: Random sampling (or random genetic drift)

From the offspring pool xðzÞ, N individuals are indepen-
dently sampled to become adults. Hence, even for a fixed
xðzÞ, different distributions of adult phenotypes are realized
according to a probability distribution (probability measure)
over all possible trait distributions. After sampling N individ-
uals independently from xðzÞ, the expectation of the average
trait value is identical to the average trait value in xðzÞ. In
contrast, the expectation of the trait variance is decreased
by a factor (N 2 1)/N (Ewens 2004). Hence, we have the
following:

E½Av½Z��¼ Avx½z�

E½Var½Z��¼ N2 1
N

Varx½z�:
(7)

Combining the two substeps, the expected changes in the
population average and the variance in one generation are
given by

E½DAv½Z�� ¼ w1m2 þ w2

2
m3; (8a)

E½DVar½Z�� ¼ N2 1
N

h
m2 þ w1m3 2w1

2m2
2 þ w2

2
ðm4 2m2

2Þ þ ms2
i
2m2:

(8b)

We are particularly interested in the dynamics of the variance
of the trait distribution. To analyze Equation 8 further, we
here assume that the trait distribution is close to a normal
distribution whose mean and variance obey the dynamics
given by Equation 8. For normal distributions, m3 ¼ 0 and
m4 ¼ 3m2

2. Using these relationships, we have the follow-
ing recursive equations for the mean and variance of the
trait.:

D�z ¼ w1m2 (9a)

Dm2 ¼ N2 1
N

ðw2 2w1
2Þm2

2 2
1
N
m2 þ N2 1

N
ms2: (9b)

The first, second, and third terms on the right-hand side of
Equation 9b represent the effect of natural selection, the loss
of diversity due to genetic drift, and the increase of diversity
due to mutation, respectively. Without selection, the vari-
ance m2 converges to ðN2 1Þms2.

Condition for the Explosion of Trait Variance

As long as the selection gradient does not vanish (w1 6¼ 0),
the mean trait value changes according to Equation 9a, which
is a standard result of population genetics (Ewens 2004) and
corresponds to the canonical equation in adaptive dynamics
theory (Dieckmann and Law 1996; Champagnat et al. 2006).
If a singular point z*, where the selection gradient vanishes
(w1 ¼ 0), is convergence stable, then the system approaches
the singular point with time (Geritz et al. 1997). Once the
mean trait (i.e., the first moment of trait distribution) rea-
ches the singularity, it will not change any longer. However,
the trait variance (i.e., the second centralized moment of the
distribution) may change with time. See Figure 2 for a sche-
matic illustration. Here we focus on the recursion for the
trait variance,

Dm2 ¼ N2 1
N

w2m2
2 2

1
N
m2 þ N2 1

N
ms2; (10)

which indicates that the one-generational change in the trait
variance is equal to the sum of three terms: the natural se-
lection term, the genetic drift term, and the mutation term.
The right-hand side of Equation 10 represents the “force”
acting on the trait variance (Figure 3). Note that the orders
of the three terms in Equation 10 are m2

2, m2, and 1, re-
spectively. When the variance is small, the mutation (the third
term) is dominant, and it increases the trait variance. As the
variance increases, the genetic drift (the second term) in-
creases its magnitude and it reduces the trait variance. The
balance between these two processes would result in the
equilibrium m2* � Nms2, which represents the variance de-
termined by mutation–drift balance. When the trait variance
is large, selection (the first term) becomes dominant. Selec-
tion decreases the trait variance when w2 , 0 (stabilizing
selection), but it increases the trait variance when w2 . 0
(disruptive selection).

Combining these, we have three different cases, depend-
ing on the parameters.

Case i: When w2 , 0, stabilizing selection is at work. Then the
dynamics of the trait variance (Equation10) have a single
positive equilibrium

m2*5
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 4ðN21Þ2w2   ms2

q
2ðN2 1Þw2

;

which is globally stable, and the trait variance converges to
this value for any initial value. At this equilibrium, the trait
variance is maintained by mutation, which increases variance,
and by genetic drift and stabilizing selection, which decrease
variance. Especially when the stabilizing selection is weak,
trait variance converges to the level maintained by mutation–
drift balance (m2* � ðN2 1Þms2) when jw2j is small.
Case ii: When 0,w2 , 1=4ms2ðN21Þ2, disruptive selection

is at work, but it is not very strong. Then the dynamics of
the trait variance have two positive equilibria: the smaller
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one is stable, but the larger one is unstable. If the trait
variance starts from a small value, it converges to the
smaller equilibrium, where the trait variance is maintained
mainly by the mutation–drift balance. If the trait vari-
ance starts from a larger value, then disruptive selection
dominates, leading to the unlimited growth of the trait
variance.

Case iii: When w2 . 1=4ms2ðN21Þ2, disruptive selection is
strong. The dynamics of the trait variance no longer have
a stable equilibrium. Starting from any initial value, the
trait variance keeps increasing without limit.

Figure 4 shows a bifurcation diagram of the variance dy-
namics given by Equation 10, with the stabilizing/disruptive
selection coefficient (w2) as a bifurcation parameter. Figure
5 shows a bifurcation diagram in which the population size
(N) is a bifurcation parameter. We have a similar bifurcation
diagram where mutational effects (ms2) serve as a bifurcation
parameter (not shown). We regard the explosion of the trait
variance in the dynamics of Equation 10 as evolutionary
branching. Then, these bifurcation diagrams show that evo-
lutionary branching occurs as a result of a saddle-node bi-
furcation. Evolutionary branching is predicted to occur at
a non-ES singular point when disruptive selection intensity,
population size, mutation rate, and mutation step size are
sufficiently large. Specifically, the deterministic dynamics
of Equation 10 predict that evolutionary branching occurs
when 4ms2ðN21Þ2w2 . 1 holds.

Stochastic Calculation of the Explosion of Variance

The deterministic dynamics of the trait variance repre-
sented by Equation 10 indicate only the expectation of one-
generational change. There must be stochasticity caused by
the genetic drift. Results of an individual-based model, such
as those illustrated in Figure 1, clearly show stochasticity.
To account for stochasticity, the deterministic difference
of Equation 10 needs to be modified by an additional term.
In this section, we derive the stochastic differential equa-

tion model considering the stochasticity of trait variance
dynamics.

The deterministic dynamics of Equation 10 can be ap-
proximated by the ordinary differential equation (ODE)

d
dt

m2 ¼ f ðm2Þ; (11a)

where

f ðxÞ ¼ ðN2 1Þw2x2 2 x þ ðN21Þms2

N
: (11b)

If stochasticity has no correlation over generations, and if
the paths can be approximated as continuous, then we can
incorporate the Brownian motion term, and the differential
Equation 11 becomes the stochastic differential equation
(SDE)

dM2 ¼ fðM2Þdt þ
ffiffiffiffi
2
N

r
M2dB; (12)

where dB denotes Brownian motion and M2 denotes a ran-
dom variable representing the trait variance. f ðM2Þ is the
systematic change per generation in variableM2 and is given
by Equation 11b.

The second term on the right-hand side of Equation 12
represents stochasticity in trait variance caused by random
genetic drift (see Appendix C for derivation). The stochastic
fluctuation term depends on the trait variance itself (geo-
metric Brownian motion), because the amplitude of fluctu-
ation in the trait variance in each generation of offspring is
large when the trait variance in each parental generation is
large. The stochastic term also depends on population size,
because fluctuation is averaged out in large populations.
Hence, random genetic drift becomes less important in larger
populations. The system is similar to but different from the

Figure 3 “Force” plotted against the trait variance based on Equation
10. Dotted, solid, and thick solid curves represent stabilizing selection
(w2 ¼ 20.2), weak disruptive selection (w2= 0.2), and strong disruptive
selection (w2 ¼ 0.6), respectively. They also correspond to cases i, ii, and
iii in the main text. Parameters: N = 400, m 5 0:01;     s 5 0:02.

Figure 2 A schematic illustration of phenotype distribution uðzÞ and
fitness function wðzÞ when the mean trait value �z has reached the sin-
gular strategy z*. The trait variance is Var½uðzÞ� 5 m2 so the standard
deviation is

ffiffiffiffiffiffiffi
m2

p
.
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motion of a particle moved by force shown in Figure 3 under
heat noise.

Stationary distribution

The corresponding Fokker–Planck equation (or forward Kol-
mogorov equation) to Equation 12 is given by

@

@t
pðm2; tÞ ¼ 2

@

@m2
½ fðm2Þpðm2; tÞ�þ 1

2
@2

@m2
2

�
2
N
m2

2pðm2; tÞ
�

(13)

(Feller 1971), where pðm2; tÞdm2 ¼ Pr½m2 #M2ðtÞ,m2þ
dm2� is the probability density for the trait variance m2.
The stationary distribution of the trait variance is

~pðxÞ ¼ C x23eðN21ÞaðxÞ; (14a)

where C is a normalizing constant and

aðxÞ ¼ w2x2 2ms2

x
: (14b)

Figure 6 illustrates an example of stationary distribution of
the trait variance, showing that the system tends to show
slightly smaller trait variance than the locally stable value in
Equation 11, because the fluctuation is weaker when the
variance is smaller (geometric Brownian motion).

Comparison with the results of simulations: We compared
the stationary distribution of the trait variance between
the theoretical prediction given by Equation 14 and the
observed distribution obtained from the individual-based
simulation (Evolutionary Branching in a Game in a Finite
Population section). Figure 7 shows good agreement be-
tween the diffusion approximation (i.e., the SDE model)
and the corresponding simulation result with a small pop-
ulation size. In particular, the approximation captures the
shift of the mode—the peak of the distribution lies at the
value smaller than Nms2 ¼ 0:0008. The average trait var-
iance in an interval shown in Figure 7 is close to Nms2 for
both analytic prediction (Equation 14) and simulation
results.

Waiting time for evolutionary branching

In case ii, there are stable and unstable equilibria for the
trait variance, the latter being larger than the former. If the
initial value of trait variance is smaller than the unstable
equilibrium, the deterministic model Equation 11 predicts
that variance would be maintained indefinitely. In contrast,
if the initial value is larger than the unstable equilibrium, it
quickly increases and grows without limit. Hence, whether
trait variance eventually explodes depends on the initial
condition. In the presence of stochasticity, however, the trait
variance would not be maintained at smaller values than the
unstable equilibrium; instead, it would fluctuate around the
stable equilibrium for a period, but then eventually increase
beyond the unstable equilibrium and diverge to infinity.
Hence, under the stochastic differential equation, the trait
variance is predicted to explode eventually even if the initial
value is small. The timing of this explosion is controlled by
the stochasticity.

The mean waiting time prior to explosion is a typical
“first passage time” problem in diffusion theory. This has
also been used in calculating the mean time of fixation in
population genetics (Kimura and Ohta 1968) and the mean
time to extinction in conservation biology (e.g., Lande 1993;
Hakoyama and Iwasa 2000) and physiology (e.g., Ricciardi
and Smith 1977).

To study the expectation of waiting time, we assume that
a system has a reflecting boundary at m2 ¼ l � 0 and an
absorbing boundary at m2 ¼ r (note that the left boundary
can never be achieved because the deterministic force is in-
creasing the variance while stochastic fluctuation vanishes
at m2 ¼ 0; i.e., Equation 12 is singular at m2 ¼ 0). Let TðhÞ
be the expected waiting time until the system reaches the
right absorbing boundary m2 ¼ r when the initial value of
the trait variance is m2ð0Þ ¼ h. To obtain TðhÞ, we use the
backward Kolmogorov equation

21 ¼ f ðhÞ d
dh

TðhÞ þ h2

N
d2

dh2TðhÞ; (15)

Figure 5 Stable (solid) and unstable (dashed) branches of the trait variance
m2 with population size N as a bifurcation parameter. A Log plot is shown.
Arrows indicate the direction of systematic change in m2. Parameters:
m 5 0:01;     s 5 0:02;     ðb1;b2; c1; c2Þ 5 ð6:0; 21:4;   4:56; 21:6Þ.

Figure 4 Stable (solid) and unstable (dashed) branches of the trait vari-
ance m2 with disruptive selection intensity w2 as a bifurcation parameter.
Arrows indicate the direction of systematic change inm2. Parameters: N =
1000, m 5 0:01;     s 5 0:02.
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with the boundary conditions TðrÞ ¼ 0 and T9ðlÞ ¼ 0 (see
Appendix E). The solution is

TðhÞ ¼ N
Z r

h

Z y

l
x23yeðN21ÞðaðxÞ2aðyÞÞdxdy; (16)

where aðxÞ is given by Equation 14b. The expected waiting
time is smaller when the population size is larger, disruptive
selection is stronger, or mutational effects are larger (see
Appendix D).

Comparison with the results of simulations: We compared
the mean waiting times observed in the computer simulations
of the individual-based model and the prediction by the ap-
proximate stochastic differential equation model given by
Equation 16. Once the system reaches a convergence stable
point, the trait variance m2 is expected to be close to the
locally stable value Nms2 (see also our results on stationary
distribution). Thus, we numerically calculate TðNms2Þ and
compare the corresponding result in individual-based simu-
lation (Figure 8). We also derive the probability distribution
of the first passage time by using Kolmogorov’s backward
equation in Appendix E, but the fit of the shape of the prob-
ability distribution of waiting times to the distribution ob-
served in individual-based simulations is less than perfect
(Figure 9).

As we decrease N, the waiting time increases exponen-
tially, and it eventually becomes impossible to escape from
the locally stable unimodal state in a reasonable time (Figure
8). This implies that evolutionary branching is unlikely to
occur in a small population.

When N is very large, genetic drift can be neglected
and the system is approximated by the ODE: dm2=dt ¼
w2m2

2 þ ms2. Thus, the waiting time can be approximated
by the time required to move from m2 ¼ Nms2 to the right
boundary m2 ¼ r. This time is �1500 for N = 1000 and
�960 for N = 2000. This calculation, in conjunction with

Figure 8, shows that the stochastic fluctuation plays a dom-
inant role even in a population of 1000 individuals.

Our reduced model measures genetic diversity in trait
distribution. An alternative measure of genetic diversity is
the number of segregating alleles, which depends only on m

and is predicted by Ewens’ sampling formula when selection
is absent (Ewens 2004). Figure 10 shows the effect of mu-
tation rate m and mutation step size s2. Simulations con-
firmed our prediction that only the value of ms2 matters,
even though the numbers of segregating alleles in the sim-
ulation with N = 1800 were �50 and �150 for m ¼0.0025
and 0.01, respectively. It is also confirmed that smaller mu-
tational effects require a longer waiting time until evolution-
ary branching.

Discussion

In this article, we have studied the effect of stochastic
fluctuation due to finite population size on evolutionary
branching. We have derived an ordinary differential equa-
tion and then a stochastic differential equation for the dy-
namics of trait variance. The analysis has revealed that there
are two different manners in which evolutionary branching
occurs: deterministic branching and stochastic branching. In
the case of deterministic branching, evolutionary branch-
ing occurs relatively soon after the mean trait reaches the
branching point. This occurs when disruptive selection in-
tensity w2 exceeds a threshold value, w2 . 1=ð4ms2ðN21Þ2Þ,
which can be approximated by 1=N, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ms2

p
. This con-

dition for deterministic branching implies that the intensity
of random genetic drift 1=N is smaller than disruptive selec-
tion intensity w2 and the mutational effects ms2 (see later in
article). If the opposite inequality holds, i.e., when disruptive
selection is weaker than the threshold, then a unimodal dis-
tribution is locally stable in the deterministic model and

Figure 7 The stationary distribution of the trait variance m2. Curves
represent an analytic result (Equation 14), while bars are a histogram of
realized trait variances in a simulation run for 106 time steps. The dashed
line represents Nms2 = 0.0008. In the simulation, the initial trait distribu-
tion was set as monomorphic at z = 0.2. The transition from this initial
state to the stationary state was negligible as it took only �5000 time
steps. Parameters: N = 200, m 5 0:01;     s 5 0:02;     ðb1;b2; c1; c2Þ 5
ð6:0; 21:4;   4:56; 21:6Þ.

Figure 6 The stationary distribution ~pðm2Þ of the trait variancem2 (Equa-
tion 14). A Log-Log plot is shown, and thus the probability density is
much higher at the peak than it appears. The locally stable value of the
variance according to Equation 11 is m2* � 0.00081, which is close to
Nms2 = 0.0008 (dashed line). Note that a local peak lies at a value
,0.0008 because of geometric Brownian motion. Parameters: N = 200,
m 5 0:01;     s 5 0:02;     ðb1;b2; c1; c2Þ 5 ð6:0; 21:4;   4:56; 21:6Þ.
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stochastic fluctuation is necessary for the population to
undergo evolutionary branching. We call this latter type
of evolutionary branching “stochastic branching.”We observed
a relatively long waiting time until evolutionary branching
occurs in simulations. The distribution and expectation of
the waiting time were mathematically calculated and these
predictions were consistent with computer simulations of the
individual-based model. Considering the several assumptions
we have adopted, the consistency is better than expected,
although not perfect. As population size or mutational effect
decreases, the waiting time exponentially increases. Mathe-
matically, this is because these factors appear in the exponent
in the expression of the expected waiting time (Equation
16). Although the increase of the waiting time is a continuous
phenomenon resulting from the underlying stochasticity
in individual-based simulations, we can understand evo-
lutionary branching by classifying it as either determinis-
tic branching in which stochastic fluctuation is unnecessary
or stochastic branching in which stochastic fluctuation is
necessary.

Our analysis has revealed that evolutionary branching is
almost impossible in some biological situations in which the
effective population size or mutational effect is sufficiently
small. As a population size increases, our condition for deter-
ministic evolutionary branching approaches and converges to
the standard branching-point condition. The condition can be
written as 4w2N2ms2 . 1, which can be used as an approxi-
mate indicator; for example, a population with size N = 108

with mutational effects ms2 ¼ 10214 is predicted to show
deterministic branching when disruptive selection intensity
is w2 ¼ Oð1Þ, although such individual-based simulation is
almost impossible.

The condition separating deterministic and stochastic
branching is understood intuitively by considering the force
suppressing variance (genetic drift) and the two forces
promoting the variance (disruptive selection and mutation).
The balance between them determines which type of
branching occurs. The condition for deterministic branching,
1=N, 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2ms2

p
can be rewritten as ð1=NÞ2 , 4w2 � ms2,

which means

ðgenetic driftÞ2 , 4· ðselection effectÞ · ðmutation effectÞ:

This implies that deterministic branching occurs when the
intensity of genetic drift is smaller than double the geo-
metric average of the selection and mutation intensities. It is
important to note that the condition is determined by N2

instead of N.
To mimic the full individual-based model by using the

deterministic and stochastic equations of the trait variance,
we have adopted several simplifying assumptions in deriving
the dynamics: i.e., trait distribution is assumed to be close to
normal, and the trait variance is small enough to justify
series expansion. From simulation results, it is clear that
the trait distribution finally becomes multimodal when evo-
lutionary branching occurs. Thus, our analytic results are
valid only for the initial growth of the trait variance where
unimodal distribution (approximated by a normal distribu-
tion) becomes broader at the singular point. This initial explo-
sion is followed by highly nonlinear and complex dynamics
that realize a multimodal distribution. Nevertheless, the agree-
ment of our analytic prediction and simulation results suggests
that our reduced model captures the onset of evolutionary
branching.

Based on individual-based simulations, Claessen et al.
(2007) reported delayed evolutionary branching and pro-
posed two reasons: random genetic drift and extinction of

Figure 9 The distribution of waiting times. Curves represent an analytic
result (see Appendix E), while bars represent a histogram of the waiting
time obtained in 1000 different runs of individual-based simulation.
Parameters: N = 1000, m 5 0:01;     s 5 0:02;     ðb1;b2; c1; c2Þ 5
ð6:0;   21:4;   4:56;   21:6Þ.

Figure 8 A Log plot of waiting times for evolutionary branching for
different population sizes (N). The thick and thin curves represent analytic
results based on a SDE model (Equation 16) and those based on an ODE
model (Equation 11), respectively. Each open circle represents the result
of a single run in individual-based simulation. The first time the trait
variance exceeded 0.1 is shown. In the simulation, the initial trait distri-
bution was set as monomorphic at z = 0.2 and each run consisted of 106

time steps. Simulation runs in which the variance did not explode are
plotted at 106. Time required to reach a singular point in the simulation
was �5000 when N = 200 and �2000 when N = 1800, which is included
to show open circles. Thus, open circles are expected to lie slightly
above the curve. Parameters: m 5 0:01;     s 5 0:02;     ðb1;b2; c1; c2Þ 5
ð6:0;   21:4;   4:56;   21:6Þ.
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incipient branches. In contrast to Claessen et al. (2007), our
model has no fluctuation in the total population size. Thus,
the delayed or absent evolutionary branching is caused by
demographic stochasticity—the fluctuation in the number of
offspring each individual produces. Our simple model has
enabled us to derive the condition for evolutionary branch-
ing mathematically, with random genetic drift taken into
consideration, which has been only verbally proposed be-
fore. In addition, our mathematical analysis and simulation
results have revealed that the mutation rate and step size
are as important as population size.

In this article, to illustrate the effect of genetic drift on
the evolutionary branching, we used as an example a pair-
wise interaction game that incorporated a Wright–Fisher
update. We conjecture that the extension of our model to
include a Moran update or to a multiplayer game is readily
possible. In the case of including a Moran update, the loss of
genetic diversity (Equation 7) should be appropriately mod-
ified and also the unit of time should be rescaled since N
Moran steps correspond to a single Wright–Fisher step. The
result of our model should be easily extended to resource-
competition models, which have been intensively studied in

adaptive dynamics (e.g., Dieckmann and Doebeli 1999;
Sasaki and Dieckmann 2011; Mirrahimi et al. 2012).

We have focused on the dynamic processes in which the
population escapes from the locally stable value of the trait
variance, while keeping its trait distribution as a unimodal
distribution. Conceptually, if we allow all possible trait dis-
tributions, we might have two locally stable states, one of
which corresponds to a unimodal state and a second that
corresponds to a fully branched state. Stochastic branching
in the present model considers only the case in which a
system located at the unimodal state escapes from this local
optimum by stochastic fluctuation (random genetic drift).
However, a branched state can also evolve back to the
unimodal state by genetic drift; thus, a stochastic analysis
including both escaping from and evolving back to the
unimodal distribution would give us an even deeper un-
derstanding of evolutionary branching.
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Appendices

Appendix A: Fitness Function and the Coefficients

Because individuals are playing a game, their payoff and thus their fitness depend not only on an individual’s own trait but also on
their opponents’ traits. In principle, it is impossible to determine a fitness function for an individual with trait z by an average trait
�z because more information is needed [i.e., the distribution of the trait uðzÞ]. However, when the trait variance Var½uðzÞ� ¼ m2 is
small, fitness is mainly determined by the deviation of the trait value from the average, z2�z and can be approximated by

wðzÞ ¼ wð�zÞ þ w1ðz2�zÞ þ w2

2
ðz2�zÞ2; (A1)

where the derivatives w1 and w2 are evaluated at a situation for which all individuals (except self) carry the average trait �z.
In other words, Equation A1 represents invasion fitness. The coefficients are functions of �z, so that w1 ¼ w1ð�zÞ and
w2 ¼ w2ð�zÞ. According to adaptive dynamics, a singular point z* satisfies w1ðz*Þ ¼ 0 and it is convergence stable if
ðd=d�zÞw1ð�zÞj�z¼z* , 0. It is evolutionarily stable if w2ðz*Þ, 0. When a singular point is convergence stable but not evolution-
arily stable, evolutionary branching is known to occur.

Here we mainly focus on a case in which the average trait remains at �z ¼ z*, and thus we treat w1 and w2 as if they were
constant coefficients. They can be explicitly calculated for finite N, but when N .100, it is well approximated by the value
obtained by an infinite population limit. In this limit, fitness function is denoted as

wðzÞ ¼ fðz; z*Þ
f ðz*; z*Þ; (A2)

and thus

w1 ¼ 1
f ðz*; z*Þ

�
@

@z
f ðz; z*Þ

����
z¼z*

	
(A3a)

and

w2 ¼ 1
f ðz*; z*Þ

�
@2

@z2
fðz; z*Þ

����
z¼z*

	
(A3b)
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hold. To calculate the intensity of disruptive selection, not only the sign but also the magnitude is important. For the model
of Doebeli et al. (2004), this becomes

w2 ¼ 2ðb22 c2Þ
f ðz*; z*Þ ; (A4)

where z* ¼ ðc1 2 b1Þ=ð4b2 2 2c2Þ. We numerically confirmed that the value of w2 can be well approximated by w2 � 0:1 for
the parameter values ðb1; b2; c1; c2Þ ¼ ð6:0; 21:4;   4:56; 21:6Þ and for the population sizes N .100. The magnitude of
disruptive selection depends on b1 and c1, as well as on b2 and c2. In the vicinity of our choice of parameter values used
in all figures, disruptive selection is stronger for smaller values of b1 and larger values of c1.

Appendix B: Derivation of Deterministic Approximation

When both selection and mutation are weak, their effects can be approximated as additive and we obtain the replicator
Equation 4. By integrating Equation 5, which is the Taylor expansion of w(z) around

�z[
Z
zuðzÞdz; (B1)

we have

�w[

Z
uðzÞwðzÞdz ¼ wð�zÞ þ w2

2
m2; (B2)

where

mk [

Z
ðz2�zÞkuðzÞdz (B3)

is the kth centralized moment around �z. Putting this into Equation 4, we have

xðzÞ ¼ uðzÞþ
h
2

w2

2
m2 þ w1ðz2�zÞ þ w2

2
ðz2�zÞ2

i
uðz; tÞ þ ms2

2
@2

@z2
uðzÞ: (B4)

Imposing zero-flux boundary conditions @u=@z ¼ 0, we have
R
xðzÞdz ¼ 1

R
xðzÞðz2�zÞdz ¼ w1m2 þ w2

2
m3

R
xðzÞðz2�zÞ2dz ¼



12

w2

2
m2

�
m2 þ w1m3 þ w2

2
m4 þ ms2:

(B5)

We denote statistical values of the offspring distribution by

Avx½z�[
R
xðzÞzdz

Varx½z�[
R
xðzÞðz2Avx½z�Þ2dz: (B6)

Then we have Avx½z� ¼ �zþ w1m2 þ ðw2=2Þm3, which is Equation 6a.
To calculate the variance in the offspring pool, we use

Varx½z� ¼
R
xðzÞ��z2�zÞ2ðAvx½z�2�zÞ2dz

¼ R
xðzÞðz2�zÞ2dz2 ðw1m2 þ w2

2
m3Þ2

(B7)

and we have

Varx½z� ¼ m2 2
w2

2
m2

2 þ w1m3 þ w2

2
m4 þ ms2 2 ðw1m2 þ w2

2
m3Þ2: (B8)

When we neglect the fifth and higher-order terms, we have Varx½z� ¼ m2 2 ðw1
2 þ w2=2Þm2

2 þ w1m3 þ ðw2=2Þm4 þ ms2,
which is Equation 6b.
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Appendix C: Derivation of SDE Approximation

We want to approximate the dynamics by an SDE with the form

dM2 ¼ fðM2Þdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gðM2Þ

p
dB; (C1)

where dB denotes Brownian motion and M2 denotes a random variable representing the variance in trait distribution. To
obtain gðxÞ, we use an established result in statistics that a random variable

X ¼
XN
i¼1

�
Zi2z
v

	2

(C2)

obeys the chi-square distribution where Zi’s are N independent random variables each of which is sampled from a normal
distribution with mean z and variance v2. The variance of the chi-square distribution is 2N. When N is large, we can
approximate z in Equation C2 by �Z. The trait variance M2 can be written by

M2 [
1
N

XN
i¼1

�
Zi2�Z

2¼ v2

N
X; (C3)

where M2 is a random variable, due to random genetic drift. Its variance over probability distribution is given by

Var½M2� ¼ 2N
�
v2

N

	2

¼ 2v4

N
: (C4)

According to our model assumptions, we approximate the variance v2 by the trait variance in offspring distribution xðzÞ.
Then, we have the approximation

Var½M2� ¼ 2m2
2

N
; (C5)

which yields gðxÞ ¼ 2x2=N and Equation 12.
By a more detailed calculation, we can show

Var½M2� ¼ 2ðN2 1Þm2
2

N2 ; (C6)

which results in ~pðxÞ ¼ x2ð3N22Þ=ðN21ÞeNaðxÞ, but for our purpose Equation C5 is precise enough.

Appendix D: Properties of Waiting Times

Here, we show that the expectation of waiting time

T ¼ N
Z r

h

Z y

l
x23yeðN21ÞðaðxÞ2aðyÞÞdxdy (D1)

is a decreasing function of w2, N, and ms2. First, T is an increasing function of aðxÞ2 aðyÞ, which satisfies

aðxÞ2 aðyÞ ¼ 2w2ðy2 xÞ2ms2
�
1
x
2
1
y

	
: (D2)

Since y . x holds in the region of integration in Equation D1, the waiting time T is a decreasing function of w2 and ms2. To
show the dependence on N, we use

d
dN

T ¼
Z r

h

Z y

l
x23eðN21ÞðaðxÞ2aðyÞÞBðx; yÞdxdy; (D3a)
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where

Bðx; yÞ ¼ y þ N
ðx2 yÞðwxy þ ms2Þ

x
: (D3b)

When N is large, B(x, y) has the same sign as x 2 y, which is negative. Thus, T is a decreasing function of N for large N. In
addition, since aðxÞ2 aðyÞ is a negative constant independent of N, we have

limN/NT ¼ 0; (D4)

with all the other parameters fixed at positive values. This is true even for the vanishing mutation rate (i.e., Nms2 ¼ const:
when N/N). However, it does not necessarily go to zero if NðaðxÞ2 aðyÞÞ does not go to 2N. For example, if Nw2 and
Nms2 remain constant as N/N, the waiting time T can be an increasing function of N.

Appendix E: Distribution of Waiting Times

Let cðxÞ be an indicator function such that cðrÞ ¼ 1 and cðxÞ ¼ 0 for l# x, r. Then a random variable cðM2ðtÞÞ is unity if
absorption at m2 ¼ r has occurred until time t, and it is zero otherwise. Let uðh; tÞ ¼ Eh½cðM2ðtÞÞ�, where Eh denotes the
expectation in the stochastic process with the initial value M2ð0Þ ¼ h. Then the following Kolmogorov backward equation
holds (Karlin and Taylor 1981):

@u
@t

¼ fðhÞ@u
@h

þ 1
2
gðhÞ@

2u
@h2: (E1)

Let Q be a random variable representing the first passage time; then it is intuitively clear that

uðt;hÞ ¼ Pr½Q# tjm2ð0Þ ¼ h� (E2)

is the probability that absorption at m2 ¼ r has occurred on or before time t. The probability density that absorption occurs
exactly at time t is given by @u=@t. A similar logic and calculation were adopted in a classical article studying the fixation
probability in population genetics (Kimura 1957). The expected first passage time is

TðhÞ ¼
Z N

0
t
@u
@t

dt: (E3)

After some calculations, we obtain

21 ¼ f ðhÞ d
dh

TðhÞ þ h2

N
d2

dh2TðhÞ;

which is Equation 15. To obtain the distribution of waiting time, we numerically solve the partial differential Equation E1
with domain h 2 ½l; r�. We impose a reflecting boundary at left and Dirichlet boundary at right, uðt; rÞ ¼ 1. In the numerical
algorithm, the initial value is set as uð0;hÞ ¼ 0 except uð0; rÞ ¼ 1. The Forward-Time Central-Space method with small dt
and dh values gives the numerical solution ~uðt;hÞ. To check the validity of this result, we numerically put it into Equation E3
and compared the result with that of the numerically obtained value of Equation 16. The expected waiting times obtained by
the two different approaches were almost the same. The distribution of the waiting time t from the initial trait variance Nms2

is given by ~uðt;Nms2Þ, which is shown in Figure 9.
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